qRT-PCR是一种相对表达定量的方法,他的计算方法有很多,常用的相对定量数据分析方法是KJ Livak(Applied Biosystems)等人在2001年提出的“比较Ct法相对定量”,即:利用ΔCt值差异来推算基因表达差异(Ct目的基因 – Ct内参基因 = ΔCt),该方法的具体计算方法请参见文章:qRT-PCR相对定量计算详解。
一般在相对定量的最终结果中,样本间的差异是以表达差异倍数(Fold change)来展现的,如下图:
那么样品间基因表达差异倍数多少则可以认为有差异呢?回答此问题,我们需要明确差异该如何去定义!
如何定义差异:
说道差异大家首先想到的肯定是生物学上的差异,例如同一基因在两个样品间的表达差异倍数,一般这个倍数从1.2、1.5、2倍都是可以的(转录组里面一般是按2倍作为筛选指标,小编觉得1.2、1.5也是可以接受的)。
另一方面,我们也应考虑随机误差,因为我们无法消除误差,看上去完美的数据也有可能是随机误差造成的,所以,我们在关注生物学差异之外,还要考虑统计学差异。
以上两种差异都是客观上存在的,我们当然是希望数据差异是由实验处理造成的,但随机误差又是客观存在的,所以随机误差发生的概率越小越好。
如何衡量随机误差?
P值(P-value),想必大家都不会陌生,它是用来判定假设检验结果的一个参数,说直白点就是P值代表了一种可能性,衡量的是随机出错的概率。在统计学中,一般要求P值小于0.05;如果P-value