spss分析qpcr数据_qRT-PCR差异分析及P值计算

本文介绍了qRT-PCR的相对定量分析方法,包括ΔCt值计算和Fold change表示样本间差异。讨论了生物学差异与统计学差异的重要性,特别是P值在判断差异显著性中的作用。文中提到了T检验和Wilcoxon test等统计方法,并通过实例展示了如何使用spss进行数据分析和P值计算。
摘要由CSDN通过智能技术生成

qRT-PCR是一种相对表达定量的方法,他的计算方法有很多,常用的相对定量数据分析方法是KJ Livak(Applied Biosystems)等人在2001年提出的“比较Ct法相对定量”,即:利用ΔCt值差异来推算基因表达差异(Ct目的基因 – Ct内参基因 = ΔCt),该方法的具体计算方法请参见文章:qRT-PCR相对定量计算详解。

一般在相对定量的最终结果中,样本间的差异是以表达差异倍数(Fold change)来展现的,如下图:

那么样品间基因表达差异倍数多少则可以认为有差异呢?回答此问题,我们需要明确差异该如何去定义!

如何定义差异:

说道差异大家首先想到的肯定是生物学上的差异,例如同一基因在两个样品间的表达差异倍数,一般这个倍数从1.2、1.5、2倍都是可以的(转录组里面一般是按2倍作为筛选指标,小编觉得1.2、1.5也是可以接受的)。

另一方面,我们也应考虑随机误差,因为我们无法消除误差,看上去完美的数据也有可能是随机误差造成的,所以,我们在关注生物学差异之外,还要考虑统计学差异。

以上两种差异都是客观上存在的,我们当然是希望数据差异是由实验处理造成的,但随机误差又是客观存在的,所以随机误差发生的概率越小越好。

如何衡量随机误差?

P值(P-value),想必大家都不会陌生,它是用来判定假设检验结果的一个参数,说直白点就是P值代表了一种可能性,衡量的是随机出错的概率。在统计学中,一般要求P值小于0.05;如果P-value

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值