转录组验证-qRTPCR作图

本文介绍了如何使用GraphPad Prism软件进行转录组验证的qRT-PCR数据分析和作图。步骤包括选择作图类型、输入数据、调整坐标轴以及添加显著性标志。同时,提供了关于纵坐标截断和添加显著性符号的详细教程链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 软件:GraphPad Prism

1. 步骤:

选择作图类型→输入分组信息和数据→点击Family的“Data 1”出现图(可修改图类型)→双击坐标轴、字体等修改美化图片

2.截断纵坐标:

### 转录组学中热图可视化多个基因在不同样本中的表达强度 为了实现转录组学研究中多个基因在不同样本中的表达强度的可视化,通常会采用热图(Heatmap)。以下是详细的介绍: #### 1. 数据准备 在构建热图之前,需要准备好标准化后的基因表达矩阵。该矩阵应包含行表示基因名称,列表示样本名称,单元格值为标准化后的表达量[^1]。 #### 2. 工具选择 常用的生物信息学工具和软件包可以用来生成热图,其中包括 R 语言中的 `pheatmap` 或者 Python 中的 `seaborn` 库。这些工具有助于快速生成高质量的热图并支持自定义样式。 #### 3. 示例代码 (R 语言) 以下是一个基于 R 语言的简单例子来创建一个热图: ```r library(pheatmap) # 假设我们有一个基因表达矩阵 data_matrix data_matrix <- matrix(rnorm(100), nrow=10, dimnames=list( paste("Gene", 1:10), paste("Sample", 1:10))) # 创建热图 pheatmap(data_matrix, color = colorRampPalette(c("navy", "white", "firebrick3"))(50), scale="row", clustering_distance_rows = "euclidean", clustering_method = "ward.D2") ``` 上述代码片段使用了 `pheatmap` 函数,并设置了颜色渐变、按照行进行缩放以及指定距离度量方式和聚类方法[^3]。 #### 4. 可视化调整 对于更复杂的场景,比如展示差异显著性的标记或者加入额外的信息层,则可以通过修改参数或增加辅助函数完成。例如,在热图上标注 p-value 显著性等级可以用星号(*)表示不同程度的显著性。 #### 5. 下载与分享数据 如果希望他人能够重复您的分析过程或将结果应用于其他目的,提供原始数据文件是非常重要的。这可能包括但不限于火山图所需的数据表、上调/下调基因列表等[^2]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值