缠论108课_缠论108课第14课:股票市场中,贵州茅台实际案例分析

4514173a88730806a2f9db50639bded2.gif

缠论第14课

股票市场中

贵州茅台实际案例分析

哈喽,各位缠友们下午好,欢迎大家进入到缠中说禅论的108课的学习。我是禅师很高兴能和大家一起学习研讨有关缠论。今天我们来学习的是缠中说禅论的第14课:股票市场中,贵州茅台实际案例分析。

之前在前面的几节课我们说了非常多的理论上面的知识,今天我们具体来用一只实际的股票,说一下具体的操作程序用法,以贵州茅台(600519)为例。这里先假设一下我们所有股票操作者看到贵州茅台上市以所有的的周线图和日线图。

之前讲过的两条均线所处的位置关系,当中交叉缠绕就是非常明显的缠绕的例子而且弱收敛和强收敛是缠绕当中的一个特殊例子。在均线操作系统当中所指的缠绕,包含这三个。

通常来说的话,出现交叉缠绕的概率是最大的,但是在长期的均线系统当中,像是周线、月线等,强收敛这样的也是比较多的。我们先来回顾一下相关的内容。

多头模式:短期均线长久在长期均线的上面。

空头模式:短期均线长久在长期均线的下面。

弱收敛:短期均线稍稍走平后,按照原来趋势继续走下去。

强收敛:短期均线和长期均线相靠近,但是既不下跌也不升破,之后就按照原来的趋势进行下去。

交叉缠绕:短期均线跌破或者是升破长期均线,甚至有可能出现难舍难分,抱成一团。

第一类买点:空头模式的最后一次缠绕后背弛下跌的一个终点。

第二类买点:多头模式之后的第一次缠绕形成的低位。首先看贵州茅台的周线图我们看到在2001年至2006年差不多近6年的周线图上面,用5周与10周均线构建的的一个买卖系统,第一类买点与第二类买点各有一个。由此可见,在周线图上,按照均线系统构成的买点不常见,所以只要出现我们要格外珍惜。

3018680c4e12cd6249a93531719d9594.png

(2002-2004年茅台周K线图)

2002年4月19号那个周,茅台进入空头模式,然后在02年7月9号那个周进入空头的第一次缠绕。在之前已经说过,第一次缠绕以后的下跌,通常不会构成买点,最少也是第二次缠绕之后。

显现的第二次缠绕在03年2月14号那周,是非常典型的交叉缠绕。但是之后下跌也没有构成背驰,所有是不符合第一类买点买入的原则。

最后在03年6月27号那周有了第三次缠绕,之后的下跌就出现了非常明显的背驰走势。

71da89f687346e430b3d22febc4022aa.png

(2004年4-6月茅台日K线图)

在MACD图上,绿柱子的长度明显比上一次缩短不少,但是低位却比上次绿柱子显现时的低位要低。

怎样判断背驰走势已经结束,最方便的方法就是看绿柱子缩短了,而且股价一直在创新低。

这个,明显地发生在03年9月26日这周。这就证明底部已经出现,第一类买点构造已经全部完成,此时的话可以大量介入了。

 c207c7fc01baac6968108a38351cce72.png

(2003-2004茅台日K线图)

第一类买点出来之后,贵州茅台也改变了走势进到多头模式。其后一直到04年6月4号那周,显现了第一次缠绕,之后的下跌造成周线上面的第二类买点。

这还有一个非常重要的问题,就是在第二类买点出现的话怎么样精准把握。在周线图的上面,多头模式显现了第一次缠绕以后的调整,不造成非常明白的下跌走势,所以对第一类买点上的背弛走势就没有办法出现。这时候我们就要降低K线级别,要从日线图上找寻最合适的买点

在这里给一个缠中说禅买点的定律:大的级别第二类买点要由次一点级别相对应的走势的第一类买点造成。

举例说明,周线上的第二类买点是由日线上相对应的走势的第一类买点构成。有这个缠中说禅买点定律的话,所有的买点都能归于第一类买点上去。

对贵州茅台,04年6月4号那周出现多头模式以后的第一次缠绕,日线图上对应的是明显的空头模式走势。该走势当中显现了三次缠绕,是在2004年4月29号、5月18号、6月1号,都明显的交叉缠绕。但之前的两次缠绕以后的下跌没有显现出来背驰,只在第三次缠绕以后,有了明显的背驰性走向趋势。

6月18号创下低点以后,MACD的绿柱子明显比之前的要短了,所以因此就构成了日线上的第一类买点。然而这个买点,就是周线上的第二类买点。

放在周线的角度上来说,贵州茅台的买点只是这两个了,之后的卖点一直到06年12月都没出现。如果投资者当时是按照这两个买点进行进入的话,那目前大概就是继续持有的状态,一直到卖点的出现。

但,这只是一种对特别多的资金的操作方法,例50亿之上的资金量。对资金量一般的,例10亿元之下的,有一种提高资金流动性的操作法,那就是要充足的利用日线的卖点避免较大的调整,虽然这种调整的话站在周线的立场上不一定非要参与。

缠中说禅的短差程序是:大级别买点的时候介入的,在次级别的时候第一类卖点出来时,可以先进行减仓,然后在次级别的时候第一类买点出现的话在回补。对周线买点介入来说,要利用日线的第一类卖点时,先减仓,然后在日线的第一类买点的时候再回补。

以贵州茅台举例说明,分析如下:

在周线03年9月26号这周依据第一类买点介入的,之后多头模式中显现了9次缠绕,前面8次的时候一个都没有构成背驰走势。在第9次出现是在04年3月26号,之后的上涨明显出现了背驰。04年4月8号的高位相对应的MACD红柱子也没有比之前更高,这就造成日线上面的第一类卖点。

然后的第一类买点显现在04年6月18号,与之对应的第一类卖点是在04年10月27号。紧跟第一类买点显现在04年12月22号,与之对应的第一类卖点显现在05年4月26号。最后第一类买点显现在05年12月13号,与之对应的第一类卖点至今也没有出现。如下两图所示。

b3572b6030f663b38c97091363f8eec1.png

意思就是,就算是站在日线的角度上来说,在05年12月13号进入贵州茅台,从来都没有出现卖点,只有一个正确的做法就是一直持有。

672313bc30e2d9bf24e185097624c3c3.png

当然啦,要是资金量很少的话,不是按照周线级别进行操作的的,第一类、第二类买点都是按照日线级的级别来设定的,那就能在对应的30分钟或更小的级别内找出来第一类买卖点来从而进行操作短差。这个就稍微费脑子了需要大家好好的研究。

要好好把握这个由均线组合造成的买卖系统,一定要深刻理解并钻研缠中说禅买点定律:大级别中的第二类买点,是由次一点级别相对应的走势的第一类买点构成。

要是资金量不是很大的话,就要熟知缠中说禅的短差程序:大级别的时候买点进入的,在次级别的时候第一类卖点显现的时候,可以先减仓,然后在次级别的时候第一类买点出现的时候再回补。这样的话才可以增加资金的利用率。投资者的话一定要多看图,按照对应的资金量和性格来确定自己的操作级别

缠论总结:

1.操作最需要注意的是确定好自己的操作级别。级别就是买卖点的一个前提。没有级别,的话相当于就没买卖点。

2.缠中说禅买点的定律:大的级别第二类买点要由次一点级别相对应的走势的第一类买点造成。此时需要注意的是,你进行分析的级别越多的话,进行操作系统的复杂性就会越高,此时分析就会越不准确,出错的几率就更大。

3.缠中说禅的短差程序是:大级别买点的时候介入的,在次级别的时候第一类卖点出来时,可以先进行减仓,然后在次级别第一类买点出现的时候再回补。对周线买点介入来说,要利用日线的第一类卖点时,先减仓,然后在日线的第一类买点的时候再回补。

4.为什么要着重强调这两类买点?也不是说只有这两类买点,别的买点就没有了,而是这两类买点相对而言的话,风险是最小,收益也是最高。需要注意的是缠中说禅的操作的风格是较大的资金,逆势的时候开重仓。

大资金通常都不会去追高,这样的话会带来比较高的冲击成本。逆势重仓,也是在最安全的一个点位,可以更好去保护你的头寸。意思就是,如果有不正常的情况出现的时候,此时止损的风险是非常低的。

好啦,今天的关于缠中说禅论108课第14节相关的学习就到这里啦,关于茅台的具体的案例分析上面已经讲述的很清楚了,大家可以细细琢磨要随时注意市场的变化。明天的同一时间我们不见不散。

往期文章精选

第1课:不会赢钱的经济人,只是废人

第2课:没有庄家,有的只是赢家和输家

第3课:你的喜好,你的死亡陷阱

第4课:禅师告诉你什么是理性

第5课:市场无需过度分析仅靠看和干

第6课:如何在五粮液包钢权证上吃肉的

第7课:给赚了指数亏了钱的散户忠告

第8课:选好临界点的重要性

第9课:股民在投资中的数学原则

第10课:禅师隔四年重看股票的原因

第11课:股票均线系统的应用

第12课:股票均线的买卖法则

▼更多精彩内容,请关注我们▼ f2ba4bf7eeb044a23a867243dea9ccd2.png禅师带你学缠论 29cb19937abbbba4bf1a85d9db5ae567.png

来都来了 点个在看再走吧~~~

0f475408e9163b70482c4b306d55780d.gif
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值