基本概念:随机试验E----指试验可在相同条件下重复进行,试验的结果具有多种可能性(每次试验有且仅有一个结果出现,且事先知道试验可能出现的一切结果,但不能预知每次试验的确切结果
样本点w ---随机试验E的每一个可能出现的结果
样本空间W----随机试验E的样本点的全体
随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一个子集
必然事件---每次试验中必定发生的事件。 不可能事件Æ--每次试验中一定不发生的事件。
事件之间的关系:

⑧A,B相互独立 P(AB)=P(A)P(B)
例1事件A,B互为对立事件等价于( D )
A、A,B互不相容 B、A,B相互独立 C、A∪B=Ω
D、A,B构成对样本空间的一个剖分
例2设P(A)=0,B为任一事件,则( C )
A、A=Æ B、AÌB C、A与B相互独立 D、A与B互不相容
例3.设甲乙两人朝同一目标射击,设A=“甲命中目标且乙未命中目标”,则:

=( D )
A) 甲未命中目标且乙命中目标 B) 甲乙都没命中目标
C) 甲未命中目标 D) 甲未命中目标或乙命中目标
事件之间的运算:
事件的交AB或A∩B
事件的并A∪B
事件的差A-B 注意: A-B = AB‾ = A-AB = (A∪B)-B
A1,A2,…,An构成W的一个完备事件组(或分斥)¾¾指A1,A2,…,An两两互不相容,且i=1Ai=W
例1设事件A、B满足A∩¯(B)=Æ,由此推导不出 (D)
A、AÌB B、¯(A)ɯ(B) C、A∪B=B D、A∩B=B
例2若事件B与A满足 B – A=B,则一定有 (B)
A、A=Æ B、AB=Æ C、A¯(B)=Æ D、B=¯(A)
运算法则:
交换律A∪B=B∪A A∩B=B∩A
结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)
分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C)
对偶律 A∪B‾‾=A‾∩B‾ A∩B‾‾=A‾∪B‾
文氏图
事件与集合论的对应关系表:
记号 | 概率论 | 集合论 |
W | 样本空间,必然事件 | 全集 |
Æ | 不可能事件 | 空集 |
w | 基本事件 | 元素 |
A | 事件 | 全集中的一个子集 |
A‾ | A的对立事件 | A的补集 |
AÌB | 事件A发生导致事件B发生 | A是B的子集 |
A=B | 事件A与事件B相等 | A与B相等 |
A∪B | 事件A与事件B至少有一个发生 | A与B的并集 |
AB | 事件A与事件B同时发生 | A与B的交集 |
A-B | 事件A发生但事件B不发生 | A与B的差集 |
AB=Æ | 事件A与事件B互不相容(互斥) | A与B没有相同的元素 |
古典概型:
古典概型的前提是W={w1, w2, w3,…, wn,}, n为有限正整数,且每个样本点wi出现的可能性相等。
P(A)=样本点总数(A包含样本总个数)
例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。
[解]:每个球有4种放入法,3个球共有43种放入法,所以|W|=43=64。
(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16
例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。
[解]:p1=99=21(1), p2= 315329393 = 14(3)
古典概型基本性质:
(1)非负性,对于任一个事件A,有P(A)³0;
(2)规范性:P(W)=1或P(Æ)=0;
(3)有限可加性:对两两互斥事件A1,A2,…,An有P(A1∪A2∪…∪An)=P(A1)+ P(A2)+…+ P(An)
概率的公理化定义:
要求函数P(A)满足以下公理:
(1)非负性,有P(A)³0;
(2)规范性:P(W)=1;
(3)可列可加性:对两两互斥事件A1,A2,…,An有P(A1∪A2∪…∪An)=P(A1)+ P(A2)+…+ P(An)


概率公式:
求逆公式 P(A‾)=1- P(A)
加法公式 P(A∪B)=P(A)+P(B)-P(AB)
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
求差公式:P(A-B)=P(A)-P(AB); 当AÉB时,有P(A-B)=P(A)-P(B)
注意: A-B = AB‾ = A-AB = (A∪B)-B
条件概率公式:P(A|B)=B(AB) ; (P(B)>0)
P(A|B)表示事件B发生的条件下,事件A发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0)
一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)
全概率公式:P(A)= (n)P(A|Bi)P(Bi) 其中B1,B2,…,Bn构成W的一个分斥。

贝叶斯公式:P(Ak|B)= B(Ak) = (n)Ai(n)(由果溯因)
例:在一个肿瘤治疗中心,有大量可能患肺癌的可疑病人,这些病人中吸烟的占45%。据以往记录,吸烟的可疑病人中有90%确患有肺癌,在不吸烟的可疑病人中仅有5%确患有肺癌
(1)在可疑病人中任选一人,求他患有肺癌的概率;
(2)在可疑病人中选一人,已知他患有肺癌,求他是吸烟者的概率.
解 :设 A={患有肺癌}, B={可疑病人吸烟}, 则由条件得:
P(B)=0.45, P(

)=0.55,

,

.
(1)由全概率公式得:

=0.68.
(2)由贝叶斯公式得:

.
2.在一个每题有5个答案可供选择的测验题中,假如有80%的学生知道指定问题的正确 答案,不知道正确答案的作随机猜测,求:
1)任意指定的一个学生能正确回答率;(5分)
2)已知指定的问题被正确解答,求此是靠随机猜测的概率
解 设 A={正确回答}, B={随机猜测}, 则由条件得:
P(B)=0.2, P(

)=0.8,

,

.
(1)由全概率公式得:

=0.84.
(2)由贝叶斯公式得:

3.某人从甲地到乙地,乘火车、轮船和飞机来的概率分别为0.2、0.4、0.4,乘火车来迟到的概率为0.5,乘轮船来迟到的概率为0.2,乘飞机来不会迟到. 试求:
(1)他来迟到的概率是多少?(5分)
(2)如果他来乙地迟到了,则他是乘轮船来的概率是多少?(5分)
解:设 A={迟到}, B1={乘火车}, B2={乘轮船}, B3={乘飞机}, 则由条件得:
P(B1)=0.2, P(B2)=0.4, P(B3)=0.4,

,

,

.

(3分)
(1)由全概率公式得:


0.18.

(7分)
(2)由贝叶斯公式得:


(10分)
4.将两种信息分别编码为A和B传递出去,由于信道存在干扰可能导致收到的信息与发送的不一致。设接收站收到信息时,信息A被误收为B的概率是0.02,而B被误收为A的概率是0.01。整个传送过程中,信息A与B传送次数比为2 :1,(1)求收到信息是A的概率;(8分)
(2)试求当收到信息是A时,问原发信息也是A的概率.(7分)
一、 解 设 A={收到信息是A}, B1={发出信息为A}, B2={发出信息为B},则由条件得:
P(A|B1)=0.98, P(A|B2)=0.01, P(B1)=2/3,P(B2)=1/3

(3分)
(1)由全概率公式得:
P(A)=0.98

2/3+0.01

1/3

0.66

(8分)
(2)由贝叶斯公式得:
P(B1|A)=

(3分)
=

(7分)
概论的性质:

应用题:
若事件

相互独立,且

,

,则

= 0.625
例1设两两相互独立的三个事件A, B和C满足条件:ABC=Æ,P(A)=P(B)=P(C)<1/2, 且已知
P(A∪B∪C)=9/16,则 P(A)= 。
[解]: P(A∪B∪C)=P(A)+P(B)+P(C)-[P(AB)+P(AC)+P(BC)]+P(ABC),
令P(A)=x, 则3x –3x2=9/16 Þ 16x2-16x+3=0 Þ x=1/4 或3/4(舍去) 则P(A)=1/4
例2某射击队共有20个射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能够进入正式比赛的概率分别是0.9、0.7、0.5和0.2,求任选一名选手能进入正式比赛的概率。
[解]:设Ak=选中第k级选手, k=1,2,3,4,B=进入正式比赛。由已知P(A1)=1/5, P(A2)=2/5, P(A3)=7/20, P(A4)=1/20; P(B|A1)=0.9, P(B|A2)=0.7, P(B|A3)=0.5, P(B|A4)=0.2. P(B)=P(A1)P(B|A1)+ P(A2)P(B|A2)+ P(A3)P(B|A3)+ P(A4)P(B|A4)=1/5´0.9+2/5´0.7+7/20´0.5+1/20´0.2=0.645
例3某物品成箱出售,每箱20件,假设各箱中含0、1件次品的概率分别为0.8和0.2,一顾客在购买时,他可以开箱,从箱中任取三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货。试求:(1)顾客买下该箱的概率 a ;
(2)顾客买下该箱物品,问该箱确无次品的概率 b 。
[解]:设事件A0—箱中0件次品, A1—箱中1件次品,事件B—买下该箱。由已知P(A0)=0.8, P(A1)=0.2,
P(B|A0)=1, P(B|A1)=19/20 ´ 18/19 ´ 17/18=17/20,
(1) a=P(B)= P(A0)P(B|A0)+ P(A1)P(B|A1)=0.8´1+0.2´7/20=0.97 ;
(2) b=P(A0|B)= P(A0B)/P(B)= P(A0)P(B|A0)/P(B)=0.8/0.97= 0.8247
例4.设A、B、C为三个事件,A与B互不相容, 且C

A, 则必有( B )
A) P(A C)=0 B) P(B C) = 0
C ) P(A+C)=0 D). P(B+C)=0
例5. 设一批产品共有1000个,其中50个次品,从中随机地不放回地选取500个产品,X表示抽到次品的个数,则P(X=3)=( A )
(A)

(B)

(C)

(0.05)3(0.95)497 (D)

例6.袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰好有3个白球的概率为( D )

事件的独立性:
如果事件A与事件B满足P(AB)=P(A)P(B),则称事件A与事件B相互独立。
结论:1. 如果P(A)>0,则事件A与B独立Û

2. 事件A与事件B独立Û事件A与事件B‾独立
Û事件A‾与事件B独立Û事件A‾与事件B‾独立

事件A1,A2,…,An相互独立---指任意k个事件Ai1,Ai2,…,Aik满足P(Ai1∩Ai2∩…∩Aik)
=P( Ai1)P(Ai2)…P(Aik),其中k=2,3,…,n。
例1设P(A)=1/2,P(B)=1/3,P(A | B)=1/4,则P( A+B)=___3/4__
例2已知

,

,

, 则

= ( D )
(A) 0.2 (B) 0.45 (C) 0.6 (D) 0.75
贝努里概型:指在相同条件下进行n次试验;每次试验的结果有且仅有两种A与A‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p。
二项概率---在n重独立试验中,事件A恰好发生k次的概率为b(k;n,p),则
b(k;n,p)= Cnkpk(1-p)n-k (k=0,1,2,3,…,n)。
第二章 随机变量与概率分布
随机变量的分布函数:
分布函数定义:
F(x)=P{x≤x}, -¥<x<+¥
分布函数(x)实质上表示随机事件P{x≤x}发生的概率。
分布函数F(x)的性质
(1)0≤F(x)≤1;
(2) ®µlimx-F(x)=0,
®µlimx+F(x)=1
(3)单调非减,当x1<x2时,F(x1)≤F(x2)
(4)右连续 ®limxx0+F(x)=F(x0)
一些概率可用分布函数来表示
P{a<x≤b}=F(b)-F(a),
P{x=a}=F(a)-F(a-0), P{x<a}=F(a-0),
P{x>a}=1-F(a),
P{x≥a}=1-F(a-0),
例1.设随机变量x的分布函数为 F(x)= £p³p1 x/2( sinx 0x</2) , 则 P{x≤p/4} = ( ) (选C,因为P{x≤p/4} =F(p/4)=sinp/4)
A、0 B、1/2 C、/2 D、1
例2.设随机变量x1和x2的分布函数分别为F1(x)和F2(x),为使F(x)=aF1(x) - bF2(x)是某随机变量的分布函数,则在下列给定的各组数值中应取 ( )
A、a=3/5,b=-2/5 B、a=3/5,b=2/5
C、a=3/5,b=-3/5 D、a=2/5,b=2/5
(选A,因为F(+∞)=1= aF1(+∞) - bF2(+∞)=a-b )
例3.连续型随机变量 x 的分布函数为 F(x) = A + B arctanx, -∞<x<∞
求:(1) 常数A,B; (2) x 落入(-1,1)的概率。
[解]:因为F(+∞)=1, F(-∞)=0,所以A + Bp/2=1,A - Bp/2=0,
解得 A=1/2, B=1/p . 即F(x) = 2(1) + p arctanx .
x 落入(-1,1)的概率为P{-1<x<1}=F(1)-F(-1)
=2(1) + p arctan1 – (2(1) + p arctan(-1))= 4(1) + 4(1) = 2(1)
例4.设X是一个连续型随机变量,其概率密度为f (x ),分布函数为F ( x ),则对于任意x值有( A )
( A ) P (X = x ) = 0 ( B )

( C ) P ( X = x ) = f ( x ) ( D ) P (X = x) = F ( x )
5.设随机变量

的概率密度为

.
求(1)系数

;(2分)(2)

的分布函数;(4分)(3)概率

.
解 由题意得:
(1)

, A=

.
(2)

(3)

设随机变量

具有概率密度

(1)确定常数

;(2)求

的分布函数

;(3)求

.
离散型随机变量:
定义:随机变量只能取有限个或可数个孤立的值离散型随机变量的概率分布简称为分布列:
概率 p1 p2 p3 ….. pn ….( X x1 x2 x3 ….. xn …. ) 其中每一个 pi≥0 且 =1
离散型随机变量的分布函数是非降的阶梯函数。
离散型随机变量常见分布:
1)两点分布X~(0,1);X的取值只有0或1,其概率为P{X=0}=p, P{X=1}=1-p
2)二项分布X~B(n,p);分布律为 b(k;n,p)= P{X=k}= Cnkpk(1-p)n-k (k=0,1,2,3,…,n) 其中 0<p<1
3)泊松分布X~P(l);分布律为 P{X=k}= lk!(k)e-l (k=0,1,2,3,…) 。
4)几何分布:X~Ge(p);分布列为 P{X=k}= (1-p)k-1p (k=0,1,2,3,…) 。
在伯努利试验序列中,记每次试验中事件A发生的概率为p,如果X为事件A首次出现时的试验次数,则X的可能取值为1,2,…,称X服从几何分布。
如果说恰好出现K次,则用二项分布b(k;n,p)= P{X=k}= Cnkpk(1-p)n-k (k=0,1,2,3,…,n) 其中 0<p<1
5)超几何分布:X~ h(n,N,M);分布列为 P{X=k}=MkN-MNN (k=0,1,2,3,…,r, 其中r=min{M,n}) 。
设有N个产品,其中有M个不合格品,若从中不放回地随机抽取n个,则其中含有的不合格品个数X服从超几何分布。
离散型例题:
例1设随机变量x的分布列为P{x=k}=2k(C),k=1,2,…,则常数C= ( )
A、1/4 B、1/2 C、1 D、2
(因为 (∞)P{x=k}=1, 即1-1/2(c/2)=1, 所以c=1 )
例2某射手有5发子弹,射一次命中的概率为0.9,如果命中了就停止射击,否则一直射到子弹用仅。求耗用子弹数x的分布列。
[解]:x的分布列为
x 1 2 3 4 5
概率p 0.9 0.09 0.009 0.0009 0.0001
例3设离散型随机变量x的概率分布为 | x 0 1 2p 0.3 0.5 0.2 |
其分布函数为F(x),则F(3)= ( )
A、0 B、0.3 C、0.8 D、1
(选D,因为F(3)=p(0)+p(1)+p(2)=1)
连续性随机变量:
定义:-随机变量可能取的值连续地充满一个范围, 如果对于随机变量x的分布函数F(x),存在非负可积函数p(x),使得对于任意实数x,有 F(x)= ò -∞xp(u)du, 则称x为连续型随机变量,其中p(x)为的概率密度函数.
密度函数必须满足条件:
(1) p(x)³0, -∞<x<+∞
(2) ò -∞+∞p(x)dx=F(+∞)=1
连续型随机变量的性质:
1.分布函数是连续函数;
2 F¢(x)=p(x);
3 P{x=a}=0, 所以P{a<x£b}= P{a£x£b}= P{a£x<b}= P{a<x<b}= ò abp(x)dx
4 P{x<x£x+Dx}» p(x)Dx
常见连续型型随机变量的分布:
1)均匀分布x~U[a,b];密度函数 p(x)=££ 0 其他( axb) 分布函数F(x)= ££ 1 x>b( axb)
2)指数分布x~exp(l);密度函数 p(x)=ll³ 0 x<0( e-x x0) 分布函数F(x)= l³ 0 x<0(1-e-x x0)
3)正态分布x~N(m,s2);密度函数p(x)= sp2(1)ems22(t-2) (-∞<x<+∞)
分布函数F(x)= sp2(1)ò¥-xems22(t-2)dt
标准正态分布N(0,1),它的分布函数F(x)可查表得到,一般F(x)=F( ms)。


例: 已知

~N(2 ,

),且P{ 2<

<4 }=0.3,则P{

<0 }=( B )
A) 0.8 B) 0.2 C ) 0.4 D). 0.5
2、甲在上班路上所需的时间(单位:分)X~N(50,100).已知上班时间为早晨8时,他每天7时出门,试求:
(1)甲迟到的概率;
解:P(甲迟到)






连续型例题:
例1设随机变量X服从参数为1的泊松分布,则P{X=EX2}= .
[解]:因为X 服从参数为1的泊松分布,所以 EX2=DX+ (EX)2=1+12=2,
于是 P{X=EX2}=P{X=2}=2(1)e –1
例2设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间EX为5小时。设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机。试求该设备每次开机无故障的时间Y的分布函数 F(y)。
[解]: X~E(l), 因为EX=1/l=5 Þ l=1/5, 每次开机无故障的时间Y=min{X,2},
易见当y<0 时,F(y)=0;当y³2时,F(y)=1;
当0£y<2时,F(y)=P{Y£y}=P{ min{X,2}£y}=P{X£y}=1-e-y/5。
所以Y的分布函数 F(y)= £³ 1 若y2(1-e-y/5 若0y<2)
随机变量的函数的概率分布:
1.离散型的求法
设离散型随机变量X的分布律为:P p1 p2 … pk …(X x1 x2 … xk …) ,则X的函数Y=g(X)的分布律为:P p1 p2 … pk …(xk …), 当g(xj)有相同情况时,概率为相应之和。
2.连续型的公式法:
设X为连续型随机变量,其密度函数为fX(x),设g(x)是一严格单调的可导函数,其值域[a,b],且g¢(x)¹0,记x=h(y)为y=g(x)的反函数,则Y=g(X)的密度函数为fY(y)=¢ab 0 其它(y| <y<)
3.连续型的直接变换法(分布函数法):
FY(y)=P{Y£y}= P{g(x)£y}= P{XÎS},其中S={x|g(x)£y},然后再把FY(y)对y求导,即得fY(y)
fY(y)=在y处不可导时(y在y处可导时)
随机变量的函数的概率分布的例题:
例1设X的分布律为:P 0.2 0.3 0.1 0.4(X -1 0 1 2),求Y=(X-1)2的分布律。
[解]:先由X的值确定Y的值,得到Y 4 1 0 1(X -1 0 1 2),将Y的值相同的X的概率合在一起,得到Y的分布律P 0.2 0.7 0.1(Y 4 1 0 )。
例2设随机变量X的分布函数为FX(x),求随机变量Y=3X+2的分布函数FY(y).
[解]:FY(y)=P{Y£y}= P{3X+2£y}= P{X£3(y-2)}= FX(3(y-2))
例3设随机变量X的密度函数为fX(x)= 0 其它(x2 -1<x<1),求随机变量Y=3X+2的密度函数fY(y).
[解]:用公式法:设y=g(x)=3x+2, y=g(x)的反函数为x=h(y)= 3(y-2) , -1<3(y-2)<1Þ -1<y<5, |h¢(y)|= 3(1)
则Y=g(X)的密度函数为
fY(y)=¢ab 0 其它(y| <y<)= 3(y-2)´3(1) 0 其它( -1<y<5)= 0 其它(2 -1<y<5)
例4设X在区间[0,2]上服从均匀分布,试求Y=X3的概率密度。
[解]:因X~U[0,2],所以 fX(x)= ££ 0 其它(1/2 0x2)。 用分布函数法分段讨论:当y<0时,
FY(y)=P{Y£y}= P{X3£y}= 0,当0<y<8时, FY(y)=P{Y£y}= P{X3£y}= P{X£y(3)}=ò3y3y2(1)dx,fY(y)= F¢Y(y)= 2(1)3(1)(y)3(2)= y2(3)y2(3),当y³8时, FY(y)=P{Y£y}= P{X3£y}= P{X£y(3)}=ò022(1)dx =1,fY(y)= F¢Y(y)= 0. fY(y)= y2(3)y2(3) 0 其它( 0<y<8)
5.已知

的概率密度为

,则3

的概率密度函数为__________
6.设

,则随机变量

在(0,4)内的概率密度函数为

7.设随机变量 X在(0,1)服从均匀分布, 则

的概率密度为
第三章 多维随机变量及其概率分布
二维随机变量:
二维随机向量(x,h)的联合分布函数指F(x,y)=P{x£x,h£y}
0£F(x,y)£1 ; F(-∞,+∞)= F(x,-∞)= F(-∞,y)=0; F(+∞,+∞)=1;
P{x1x£x2,y1<h£y2}=F(x2,y2)- F(x2,y1)- F(x1,y2)+F(x1,y1)
二维随机向量(x,h)的边缘分布函数
Fx(x)= P{x£x}=F(x,+∞), Fh(y)= P{h£y}=F(+∞,y)
二维离散随机变量:
二维离散型随机变量及其概率分布
P{x=xi,h=yj}=pij , 其中 ( ) ( )pij=1 且 pij³0
可用一个分布列表或分布列矩阵 (pij) 来表示
x的边缘分布列为 P{x=xi}= ( )pij = pi*
h的边缘分布列为 P{h=yj}= ( )pij = p*
例1设二维随机向量(x,h)的联合分布律为
hx | 1 | 2 |
1 | 1/6 | 1/3 |
2 | 1/4 | a |
则常数a= ( )
A、1/6 B、1/4 C、1/3 D、1/2
[答案]: ( ) ( )pij=1 所以 a=1/4 , 选B.
二维连续随机变量:
二维连续型随机向量(x,h)的分布函数F(x,y)= ò-∞xò-∞yp(u,v)dudv
p(x,y) 称为随机向量(x,h)的联合密度函数p(x,y)³0, ò-∞+∞ò-∞+∞p(x,y)dxdy=1 , ¶¶¶y()=p(x,y)
利用密度函数求概率 P{(x,h)ÎD}=òòxy
二维连续型随机向量(x,h)的边缘分布, px(x),ph(y) 称为边缘密度函数
px(x)= ò-∞+∞p(x,y)dy ph(y)= ò-∞+∞p(x,y)dx
条件分布:
离散型:在条件Y=yj下随机变量X的条件概率分布为
P{X=xi|Y=yj}=P{Y=yj}(P{X=xi,Y=yj}) = p*j(pij), i=1,2,…
连续型:在条件Y=y下随机变量X的条件分布函数FX|Y(x|y)与条件概率密度函数fX|Y(x|y)分别为:
FX|Y(x|y)= y() fX|Y(x|y) = y()
例1:设随机变量X在区间 (0,1)上服从均匀分布,在X=x (0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布,求:随机变量X和Y的联合概率密度;
[解]:X的概率密度为 fX(x)= 0 其他(1 0<x<1),在X=x (0<x<1)的条件下,
Y的条件概率密度为 fY|X(y|x)= 0 其他(1/x 0<y<x)
当 0<y<x<1时,随机变量X和Y的联合概率密度为 f(x,y)=fX(x)fY|X(y|x) = 1/x
在其它点 (x,y)处,有 f(x,y) =0,即X和Y的联合概率密度为f(x,y) = 0 其他(1/x 0<y<x<1)
例2:设随机变量X与Y相互独立,X概率分布为P{X=i}=1/3 (i=-1, 0 1),
概率密度为fY(y)= ££0 其它(1 0y1),记Z=X+Y, 求P{Z£1/2 | X=0}。
[解]:(1) P{Z£2(1)|X=0}= P{X+Y£2(1)|X=0}= P{Y£2(1)}=ò01/21dy= 2(1).
二元正态分布:
二元正态分布N(m1,m2,s12,s22,r)的密度函数
p(x,y)= pssr1-2(1) exp{-r1-2(1)[ms12(x-12) - rmmss12(y-2) + ms22(y-22)]}
二元正态分布N(m1,m2,s12,s22,r)的边缘密度分布仍是正态分布 x~N(m1,s12) , h~N(m2,s22)
边缘概率密度为 fX(x)= sp2(1)ems212(x-12), fY(y)= sp2(1)ems222(y-22)
二元均匀分布:
(X,Y)在区域D上服从均匀分布¾设D是xOy面上的有界区域,其面积为A。如果二维随机变量(X,Y)具有概率密度 f(x,y)= Î0 其他(D),则称(X,Y)在区域D上服从均匀分布。
例1:设 (X,Y) 服从区域D:{(x, y):a≤x≤b, c≤y≤d}上的均匀分布,求
(1)(X,Y) 的联合概率密度p(x, y); (2)X, Y 的边际概率密度 pX(x) , pY(y) ;
[解]:(1) f(x,y)= ££££ 0 其他( axb cyd) ;
(2) pX(x)= ò-∞+∞p(x,y)dy =££ 0 其他( axb), pY(y)= ò-∞+∞p(x,y)dx=££ 0 其他( cyd)
例1设二维随机变量(X,Y)的分布函数F(x,y)=A(B+arctan2(x))(C+arctan3(y))。试求:(1)常数A,B,C;(2) (X,Y)的概率密度。[解]:由分布函数性质,得到F(+∞,+∞)=A(B+p)(C+p), F(x,-∞)=A(B+arctan2(x))(C-p)=0,
F(-∞,y)=A(B-p)(C+arctan3(y))=0, 解得 A=p2(1), B=C=p . 即F(x,y)= p2(1)(p+arctan2(x))(p+arctan3(y))。
(2) f(x,y) = ¶¶¶y() = py2+4(6) .
例2: 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,求P{max{X,Y}£1}。.
[解]:P{max{X,Y}£1}=P{X£1且Y£1},因为X与Y相互独立,所以
P{X£1且Y£1}= P{X£1}P{Y£1}=3(1)´3(1)= 9(1) 。(这里P{X£1}=ò013(1)dx= 3(1))
例3:设二维随机变量(X,Y)的概率密度为f(x,y) = 0, 其它(1, 0<x<1,0<y<2x)
求:(1) (X,Y) 的边缘概率密度fX(x), fY(y);(2) Z=2X-Y的概率密度 fZ(z) 。
[解]:(1) fX(x)= ò-∞+∞f(x,y)dy====0<x<1ò12x1dy= 2x, 所以边缘概率密度fX(x)= 0 其它(2x 0<x<1)
fY(y)= ò-∞+∞f(x,y)dx====0<y<2òy/211dx= 1-2(1)y, 所以边缘概率密度fY(y)= 0 其它(1-y/2 0<y<2)
(2) FZ(z)=P{2x-y£z}=£òòxy====0<z/2<11-òò=1-òz/21dxò02x-z1dy =1-òz/21(2x-z)dx= z - 4(z2)
得到FZ(z)= £³1 z2(z-z2/4 0z<2),所以Z的概率密度 fZ(z)=FZ¢(z)= £0 其它(1-z/2 0z<2)
4.设随机变量

和

具有联合概率密度

;求边缘概率密度

及

例4设二维随机变量(X,Y)的概率密度为
f(x,y)= ££££ 0 其他(x2+cxy 0x1.0y2)
求(1)常数C; (2)P{X+Y³1};(3)联合分布函数F(x,y).
[解]:(1)由的概率密度性质得到
1=ò-∞+∞ò-∞+∞f(x,y)dxdy=ò01ò02(x2+cxy)dxdy=3(2)+c Þ c=3(1) ;
(2)
P{X+Y³1}=³òòxy=òòxy
=ò01dxò1-x2(x2+3(xy))dy=ò01(6(5)x3+3(4)x2+2(1)x)dx = 72(65)
(3) 当x<0或y<0时,
F(x,y)= ò-∞xò-∞yp(u,v)dudv=0;
当0£x1, 0£y<2时,
F(x,y)= ò-∞xò-∞yp(u,v)dudv=ò0xò0y(u2+3(uv))dudv=3(x3y)+12(x2y2);
当0£x1, y³2时,
F(x,y)= ò-∞xò-∞yp(u,v)dudv=ò0xò02(u2+3(uv))dudv=3(2x3)+3(x2);
当x³1, 0£y<2时,
F(x,y)= ò-∞xò-∞yp(u,v)dudv=ò01ò0y(u2+3(uv))dudv=3(y)+12(y2);
当x³1, y³2时,
F(x,y)= ò-∞xò-∞yp(u,v)dudv=1
综上所述
F(x,y)= 3(x3y)12(x2y2)££3(2x3)3(x2)£³3(y)12(y2)³£³³ 1 x1及y2( x1及 0y<2)
独立性:
若F(x,y)=Fx(x)Fh(y),则称随机变量x与h相互独立。
几个充要条件:
连续型随机变量x与h相互独立Û p(x,y)=px(x)ph(y)
离散型随机变量x与h相互独立Û pij=pipj
二元正态分布N(m1,s12,m2,s22,r) 随机变量x与h相互独立Ûr=0。
X与Y相互独立Þf(X)与g(Y)也相互独立。
例:袋中有2只白球,3只黑球,现进行无放回地摸球,定义:
x = 0 第一次摸出黑球( 1 第一次摸出白球)
h= 0 第二次摸出黑球( 1 第二次摸出白球)
求:(1)(x,h)的联合分布;
(2)x,h 的边际分布;
(3)x,h 是否相互独立?
[解]:(x,h)的联合分布与边际分布为
x h | 0 | 1 | px | |
0 | 3/10 | 3/10 | 6/10 | |
1 | 3/10 | 1/10 | 4/10 | |
ph | 6/10 | 4/10 |
因为
p(0,0)=3/10¹px(0)ph(0)=9/25
所以x与h不独立。
例2:设A, B是二随机事件;随机变量 X=-1 若A不出现(1 若A出现) Y=-1 若B不出现(1 若B出现)
试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
例3设(X,Y)的概率密度为,f(x,y)= ££££ 0 其他(8xy 0x1及0yx), 求:关于X及关于Y的边缘概率密度,并判断X与Y是否相互独立。
[解]:关于X的边缘概率密度fX(x)= ò-∞+∞f(x,y)dy, 当0£x£1时,fX(x)= ò0x8xydy=4x3, 当x<0或x>1时,fX(x)=0; 所以 fX(x)= ££ 0 其他(4x3 0x1)。同理当0£y£1时,fY(y)= òy18xydx=4y(1-y2), 其它情况fY(y)=0, 所以关于Y的边缘概率密度fY(y)= ££ 0 其他(1-y2 0x1). 因为当0£x£1, 0£y£1时,f(x,y)¹ fX(x)fY(y),所以X与Y不独立。
设二维随机变量(X,Y )的概率密度函数为关于
2.

求: (1) Y关于X的边缘分布密度函数

,并判断X与Y是否独立?(6分)
(2)

. (4分)
解 由条件得:
当

时,则

,从而

当

时,则

从而

(1)

因为

,

,所以X与Y不独立.
(2)

两个随机变量的函数的分布:
几条结论:
1. X~P(l1), Y~P(l2), 若X与Y相互独立,则X+Y~P(l1+l2);
2. X~N(m1,s12), Y~ N(m2,s22), X与Y相互独立,则X+Y~ N(m1+m2,s12+s22);
3.(卷积公式)设(X,Y)是二维连续型随机变量,其概率密度为f(x,y),关于X,Y的边缘概率密度分别为fX(x), fY(y),设X与Y相互独立,则Z=X+Y的概率密度为 fZ(z)= ò-∞+∞fX(x)fY(z-x)dx=ò-∞+∞f(x, z-x)dx 或fZ(z)= ò-∞+∞fX(z-y)fY(y)dy=ò-∞+∞f(z-y, y)dy.
例1:已知的联合概率分布为 1 3/20 3/20 1/20( 0 1/4 1/10 3/10), 求(1)X+Y的概率分布;(2)XY的概率分布。
[解]:令Z1=X+Y,则Z1的加法表为 1 1 2 3( 0 0 1 2),令Z2=XY,则Z2的乘法表为 1 0 1 2( 0 0 0 0),
(1) Z1的分布律为P 1/4 3/20+1/10 3/20+3/10 1/20(Z1 0 1 2 3), 即P 1/4 5/20 9/20 1/20(Z1 0 1 2 3)
(2) Z2的分布律为P 1/4+3/20+1/10+3/10 3/20 1/20(Z1 0 1 2), 即P 4/5 3/20 1/20(Z1 0 1 2)
例2:设随机变量X,Y相互独立,且都服从[0,1]上的均匀分布,求X+Y的概率密度。
[解]:X~U[0,1], Y~U[0,1], 所以Z=X+Y在有效区间[0,2]上取值。利用卷积公式得到
fZ(z)= ò-∞+∞fX(x)fY(z-x)dx。 积分变量的有效区域为 0£x£1, 0£z-x£1 Û 0£x£z, z-1£x£1.
当0£z£1时,fZ(z)= ò0z1´1dx=z; 当1<z£2时,fZ(z)= òz-111´1dx=2-z;当的其余取值时,fZ(z)=0。
所以Z的概率密度fZ(z)= £££ 0 其他(2-z 1<z2)
多维随机变量:
n维随机变量(X1,X2,…,Xn)的分布函数F(x1,x2,…,xn)=P{X1£x1, X2£x2,…,Xn£xn}
.如果X1,X2,…,Xn相互独立,且每个Xi~N(mi,si2), 则X=a1X1+a2X2+…+anXn ~ N(maii(n), sai2i2(n))
如果X1,X2,…,Xn相互独立,Xj的分布函数为FXj(xj),
则M=max{X1,X2,…,Xn}的分布函数为 Fmax(z)=FX1(x1)FX2(x2) …FXn(x1n),
则m=min{X1,X2,…,Xn} 的分布函数为 Fmin(z)=1-[ (1-FX1(x1))(1-FX2(x2)) …(1-FXn(x1n))]
第四章 随机变量的数字特征
数学期望:
1. 随机变量数学期望的定义—
离散型 E(x)= E(g(x))=
连续型E(x)=ò -∞+∞xp(x)dx E(g(x))=ò -∞+∞g(x)p(x)dx
2. 二维随机变量(X,Y)的数学期望:
离散型 E(X)=*=xipij
E(Y)= yjp*j=yipij
连续型E(X)=ò -∞+∞xfX(x)dx=ò -∞+∞ò -∞+∞xf(x,y)dxdy
E(Y)=ò -∞+∞yfY(y)dy=ò -∞+∞ò -∞+∞yf(x,y)dxdy
3. 二维随机变量X的函数Y=g(X)的数学期望:
E[g(X,Y)]= g(xi,yj)pij
E[g(X,Y)]= ò -∞+∞ò -∞+∞g(x,y)f(x,y)dxdy
4. 数学期望的性质
E(c)=c , E(ax)=ax , E(x±h)=Ex±Eh

若x与h相互独立,则 E(xh)=ExEh
方差:
1.随机变量方差的定义¾¾-
D(X)=E[X-E(X)]2 = EX2 – (EX)2
D(X)= ò -∞+∞[x-E(X)]2 f(x)dx
2.方差性质:
D(c)=0 , D(ax)=a2x , D(ax+b)=a2Dx , D(x±h)=Dx+Dh±2cov(x,h)
若x与h相互独立,则 D(x±h)=Dx+Dh
协方差:
1.x与h的协方差cov(x,h)=E[(x-Ex)(h-Eh)] (或为sxh)
2.协方差的性质:
cov(x,x)= Dx
cov(x,h)=cov(h,x), cov(x,c)=0
cov(ax,bh)=ab cov(x,h) ,
cov(x,h±z)=cov(x,h)±cov(x,z)
3.协方差矩阵:
设n维随机变量X1,X2,…,Xn, 记cij=cov(Xi,Xj),则称阶矩阵C=(cij)n´n为X1,X2,…,Xn的协方差矩阵
例1:设x的密度函数
p(x) = Î0 其它(c/x2 x[1,3]) 求:Ex
[解]∵1=ò -∞+∞p(x)dx ∴c=3/2;
Ex=ò -∞+∞xp(x)dx=ò 13x2x2(3)dx=2(3)lnx=2(3)ln3.
例2设 x1,x2 是随机变量 x 的两个任意取值,证明:E[(x - 2(x1+x2))2] ³ Dx 。
[证]:E[(x - 2(x1+x2))2]=E[x2-x(x1+x2)+ (2(x1+x2))2]
= Ex2-(Ex)(x1+x2)+ (2(x1+x2))2- (Ex)2+(Ex)2
=Dx+(Ex)2- (Ex)(x1+x2)+ (2(x1+x2))2
=Dx +(Ex - 2(x1+x2))2³Dx .
例3设随机变量的概率密度为fX(x)= 2(1)e- |x| ,
-∞<x<+∞, 求D(X).
[解]:E(X)= ò -∞+∞xfX(x)dx=2(1)ò -∞+∞x e- |x| dx=0
(奇函数,对称区间上的积分)
E(X2)= ò -∞+∞x2fX(x)dx=2(1)ò -∞+∞x2 e- |x| dx =
=2(1)´2ò 0+∞x2 e- - x dx =G(3)=2
(偶函数,对称区间上的积分)
所以D(X)= EX2 – (EX)2=2.
例4设(X,Y)的协方差矩阵为C=-3 9(4 -3),求X与Y的相关系数rXY 。
[解]:由协方差矩阵得到:
D(X)=cov(X,X)=4,
D(Y)=cov(Y,Y)=9, Cov(X,Y)= -3
rXY=Y() = ´23(-3) = - 2(1)
例5.设随机变量

与

相互独立,且

,

服从于参数为9的泊松分布,则

( C )
A. –14 B. –13 C. 40 D. 41
6.设随机变量

服从参数为

的泊松分布,且已知

,则

= 1
相关系数:
x与h的相关系数rxh的定义 rxh=xhxh
相关系数rxh反映了随机变量x与h之间的线性相关的程度。注意|rxh|£1。
当rxh=0,则称x与h不相关;
当|rxh|=1,则称x与h完全相关
几个结论: rxh=0 Û cov(x,h)=0
Û E(xh)=ExEh
Û D(x+h)=Dx+Dh
Û D(x-h)=Dx+Dh
注意随机变量x与h相互独立,则x与h不相关;
反之x与h不相关,不能推出x与h相互独立。
例5设X与Y相互独立且都服从N(0,s2),若x=aX+bY, h=aX-bY, 证明:x与h的相关系数,rxh=a2+b2(a2-b2) 。
[证]:cov(x,h)=cov(aX+bY,aX-bY)
=a2cov(X,X) – b2cov(Y,Y) = a2DX – b2DY
=(a2 – b2)s2 。 又因为
Dx=D(aX+bY)=a2DX+b2DY=(a2 + b2)s2
Dh=D(aX - bY)=a2DX+b2DY=(a2 + b2)s2
所以:rxh=xhxh = ss2(a2-b22)
= a2+b2(a2-b2)
例6 设随机变量(X,Y)~N(1,1;4,9;

),则Cov(X,Y)=( B )
(A) 0.5 (B)3
(C) 18 (D)36
(注:(X,Y)~N(1,1;4,9;

)其中的

是相关系数)
7.设随机变量X~B(4,

),Y~N(2,16),又E(XY)=6,则X与Y的相关系数

( A )
( A) 0.5 (B) -0.16 (C) 0.8 (D) -0.5
其他:
k阶原点矩:E(Xk) k=1,2,…。 k+s阶混合原点矩:E(XkYs) k,s =1,2,…
k阶中心矩:E[(X-EX)k] k=1,2,…。 k+s阶混合阶中心矩:E[(X-EX)k(E-EY)s] k,s=1,2,…
协方差矩阵:C=(cij)n´x 其中cij=E[(Xi-EXi)( Xj-EXj))]
常用分布的期望与方差
分布 | 分布列和概率密度 | 数学期望 | 方差 |
分布(0,1) | P{x=0}=p, P{x=1}=1-p | p | p(1-p) |
二项分布B(n,p) | b(k;n,p)= P{x=k}= Cnkpk(1-p)n-k (k=0,1,2,3,…,n) | np | np(1-p) |
泊松分布P(l) | P{x=k}= lk!(k)e-l k=0,1,2…, l>0 | l | l |
均匀分布U[a,b] | p(x)=££ 0 其他( axb) | 2(a+b) | 12(b-a2) |
几何分布X~Ge(p) | 分布列为 P{X=k}= (1-p)k-1p (k=0,1,2,3,…) | p(1) | p2(1-p) |
超几何分布X~ h(n,N,M) | P{X=k}=MkN-MNN k=0,1,2,3,…, min{M,n} | N(nM) | N-1(N-n) |
指数分布exp(l) | p(x)=ll³ 0 x<0( e-x x0) | l | l2(1) |
正态分布N(m,s2) | p(x)= sp2(1)ems22(x-2) (-∞<x<+∞) | m | s2 |
二维正态分布N(m1,s12,m2,s22,r) | p(x,y)= pssr1-2(1) exp{-r1-2(1)[ms12(x-12) - rmmss12(y-2) + ms22(y-22)]} | Ex=m1Eh=m2 | Dx=s12Dh=s22 |
第五章 大数定律及中心极限定理
切比雪夫不等式:P{|x-Ex|³e}£ xe2(D) , P{|x-Ex|<e}³ 1 - xe2(D)
例1:设随机变量x1, x2, x3,独立同分布,且xi服从参数为l的指数分布,i=1,2,3,试根据切比雪夫不等式证明:P{0<x1+x2+x3<6/l}≥2/3 .
[证]:xi~exp(l), ExI=1/l; 令X=x1+x2+x3 ,则EX=E(x1+x2+x3)=3/l,DX=D(x1+x2+x3)=3/l2.P{0<x1+x2+x3<6/l}= P{0<X<6/l}= P{-3/l<X-3/l<3/l}= P{|X-3/l|<3/l}
³1 - e2(DX) = 1- ll2(3/2) = 1- 9(3) = 3(2)
例2:已知随机变量X的期望E(X)=100,方差D(X)=10,估计X落在(80,120)内的概率。
[解]:P{80<X<120}= P{-20<X-100<20}= P{|X-E(X)|<20}³ 1 - 202(DX) = 1 - 400(10) = 0.975
例3.若

, 利用切比雪夫不等式知

=——————
例4.设X1,X2,……,Xn是来自总体N(μ,σ2)的样本,对任意的ε>0,样本均值

所满足的切比雪夫不等式为( B )
A.P

≥

B.P

≥1-

C.P

≤1-

D.P

≤

例5.设随机变量X~U(0,1),用切比雪夫不等式估计P(|X-

|

)≥_____0.25 _______
大数定律:
切比雪夫大数定理:设随机变量X1,X2,…,Xn相互独立,分别具有数学期望与方差,且方差一致有上界,则对任意给定正数e,恒有®µlimnP{| n(1)xi(n) –n(1)Exi(n) | <e}= 1。
伯努利大数定理:设nA是在n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对任意给定正数e,恒有®µlimnP{|n(nA) - p|<e}= 1 (或 ®µlimnP{|mn(n) - p| ³e}= 0)
辛钦大数定理:设随机变量X1,X2,…,Xn,…相互独立,服从同一分布,且具有数学期望EXk=m,则对任意给定正数e,恒有®µlimnP{| n(1)xi(n) – m | <e}= 1
中心极限定理:
棣莫弗(Demoiver)-拉普拉斯(Laplace)定理:设随机变量Yn (n=1,2,3,…)服从参数为n, p的二项分布,即Yn~B(n,p),则对任意实数x,恒有 ®µlimnP{npq(Yn-np)£x}= F(x) = ò-∞xp2(1)e2(t2)dt ®òabp2(1)e2(t2)dt
这一定理说明,服从二项分布B(n,p)的随机变量Yn作标准化后的随机变量npq(Yn-np)的极限分布是标准正态分布N(0,1)。
中心极限定理(林德贝格-勒维):设随机变量X1,X2,…,Xn,…相互独立,服从同一分布,且具有数学期望EXk=m,和方差D(Xk)=s2¹0,随机变量Yn=(xk(n)-nm)/s 的分布函数为 Fn(x),则对任意实数x,恒有 ®µlimnFn(x)= ®µlimnP{Yn£x}= F(x) = ò-∞xp2(1)e2(t2)dt
这一定理说明,xk(n)的标准化随机变量Yn=(xk(n)-nm)/s 的极限分布是标准正态分布N(0,1)
中心极限定理的应用:
将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为____0.0228_______.(附:Φ(2)=0.9772)
设随机变量X~B(100,0.2),应用中心极限定理可得P{X≥30}=________0.0062 __. (已知Φ(2.5)=0.9938)
例1:某计算机系统由120个终端,每个终端在1小时内平均有3分钟使用打印机,假定各终端使用打印机与否是相互独立的,求至少由10个终端同时使用打印机的概率。
[解]:设X为同时使用打印机的终端的个数,则X~B(120,p),这里p=3/60=0.05。E(X)=np=120´0.05=6, D(X)=npq=6´0.95=5.7 。则 P{X³10}=1 – P{X<10}=1 – P{X<10}=1 – P{5.7(X-6)<5.7(10-6)} 利用中心极限定理上式近似等于 =1-F(1.6754)=1- 0.9621=0.0379. 即至少由10个终端同时使用打印机的概率为0.0379
例2:在抛硬币的试验中,至少抛多少次, 才能使正面出现的频率落在(0.4, 0.6)区间的概率不小于0.9?
[解]:设共进行次试验,X为出现正面的次数,则X~B(N,p),这里p=1/2=0.5。E(X)=np=0.5N, D(X)=npq=0.25N 。所求的为 P{0.4<X/N<0.6}³0.9。 将X标准化 P{0.4<X/N<0.6}= P{0.4N<X<0.6N} = P{DX(0.4N-EX)<DX(X-EX)<DX(0.6N-EX)}= P{-0.2<DX(X-EX)<0.2}»2F(0.2) – 1 ³0.9
ÞF(0.2)³0.95, 查表F(1.645)=0.95,则0.2³1.645 Þ N ³67.65, 即至少抛68次才能满足要求。
例3:设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{|X+Y|³6}£ . [解]: E(X+Y)=EX+EY= -2+2=0,
D(X+Y)=DX+DY+2cov(X,Y)=1+4+2r = !+4+2(-0.5)´1´2= 3,
则根据切比雪夫不等式P{|X+Y|³6}= P{|X+Y - E(X+Y)|³6}£ 62(X+Y) =16(3) = 12(1)
例4:生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克。若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977(F(2)=0.977,其中F(x)是标准正态分布函数)
[解]: 设Xi为第i箱重量(千克),i=1,2,…,n。则EXi=EX=50,DXi=50。
令Z=Xi(n), 则EZ=50n, DZ=25n. 要求P{Z£5000}³0.977,
利用中心极限定理 P{Z£5000}= P{DZ(Z-EZ)£n(5000-50n)}=F(n(5000-50n))³0.977
因为F(2)= 0.977,所以n(5000-50n)³2 Þ 25n2-5001n+250000£0
Þ n£98. 每辆车最多可以装98箱,才能保障不超载的概率大于0.977.
例4:设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn, 则根据列维-林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
A、有相同的数学期望 B、有相同的方差
C、服从同一指数分布 D、服从同一离散型分布
[解]: 根据列维-林德伯格中心极限定理的条件,X1,X2,…,Xn必须独立同分布,所以不能选A, B。又必须具有有限的数学期望和方差,故D不一定能保证此条件,应选C。
例4:设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=n(1)xi2(n)依概率收敛于 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:n(1)xi(n)¾® n(1)Exi(n) (n®∞)。【解】 这里X12,X22,…,Xn2,满足大数定律的条件,且EXi2=DXi+(EXi)2=1/4+(1/2)2= 1/2,因此根据大数定律有Yn=n(1)xi2(n)依概率收敛于 n(1)Exi2(n)= 2(1)
第六章 样本及抽样分布
(1)数理统计的基本概念:
总体:在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。
个体:总体中的每一个单元称为样品(或个体)。
样本:我们把从总体中抽取的部分样品

称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,

表示n个随机变量(样本);在具体的一次抽取之后,

表示n个具体的数值(样本值)。我们称之为样本的两重性。
样本函数和统计量:
设

为总体的一个样本,称

(

)
为样本函数,其中

为一个连续函数。如果

中不包含任何未知参数,则称

(

)为一个统计量。
常见统计量及其性质:
样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩


,

,

,

,
其中

,为二阶中心矩
(2)正态总体下的四大分布:
正态分布
设

为来自正态总体

的一个样本,则样本函数

例:设总体

~

是取自

的样本,则( D )
A)

B)

C)

D)

t分布
设

为来自正态总体

的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。


设

为来自正态总体

的一个样本,则样本函数

其中

表示自由度为n-1的

分布



例:已知F0.1(7,20)=2.04, 则F0.9(20,7)=_______ 0.4902_____ .
例. 对于给定的正数

,

,设

,

,

,

分别是

,

,

,

分布的下

分位数,则下面结论中不正确的是( B )
(A)

(B)

(C)

(D)

2、设X、Y相互独立,且都服从标准正态分布,则Z =

服从______ t(1)_____分布 (同时要写出 分布的参数) .
3.设

和

相互独立且都服从N(0,4),而

和

分别是来自总体

和

的样本,则统计量

服从的分布为

。
(3)正态总体下分布的性质:

与

独立。
第七章 参数估计
(1)点估计
矩估计
设总体X的分布中包含有未知数

,则其分布函数可以表成

它的k阶原点矩

中也包含了未知参数

,即

。又设

为总体X的n个样本值,其样本的k阶原点矩为


这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数

即为参数(

)的矩估计量。
若

为

的矩估计,

为连续函数,则

为

的矩估计
极大似然估计:
当总体X为连续型随机变量时,设其分布密度为

,其中

为未知参数。又设

为总体的一个样本,称

为样本的似然函数,简记为Ln.
当总体X为离型随机变量时,设其分布律为

,则称

为样本的似然函数。
若似然函数

在

处取到最大值,则称

分别为

的最大似然估计值,相应的统计量称为最大似然估计量。

若

为

的极大似然估计,

为单调函数,则

为

的极大似然估计。
例:1.设 X1, X2, …, Xn 是来自参数为 l 的泊松分布总体 X 的一个样本,试求:(1)l 的矩估计;(3分)(2)l的极大似然估计.(5分)
解 (1) 因

,故的矩估计为

(2) 因似然函数为

从而

令

,则得到l的极大似然估计为

2.设总体

有概率分布
取值 | -1 0 1 |
概率 |
其中

为待估参数. 现在观察到一个容量为3的样本,

, 试求:(1)

的矩估计值;(4分) (2)

的极大似然估计值.(6分)
解:令

故

的矩估计为

,
从而

的矩估计值为



.
(2) 因似然函数为


,
令

,则得到

的极大似然估计值为

.
3.设总体