pca 累积方差贡献率公式_SVD是如何给PCA减负的?

本文介绍了PCA(主成分分析)和SVD(奇异值分解)的区别与联系,强调SVD在PCA计算中的优势。PCA通过线性变换降低数据维度,SVD提供了一种更高效的计算方式,尤其在高维数据下,能够减少计算复杂度,为PCA‘减负’。文章还探讨了PCA中的去中心化操作,指出这是算法内必需的步骤,确保SVD结果与PCA一致。

4eba7a871858d7b2ced4eb6f3a8514f1.png

最近在重温一些经典的算法,故在此记录一下学习的心得,有理解的不到位的地方欢迎各位大佬不吝赐教。

【7.22 】【更新:PCA中的去中心化操作可以这样理解,这不是一个预处理操作,这是一个算法内所必须执行的操作】

正文:

首先,先简单说一下SVD和PCA的区别和联系:

PCA全称叫做主成分分析(pricinple conponent anlaysis),顾名思义就是分析主要的成分,但是什么叫做主要特征,什么叫做次要特征?这个也不是我们肉眼来界定的。这里面主要的思路是,可以简单的理解为经过一个线性变换将高维的一个矩阵变为一个低维的矩阵。即输入X (shape:n*d)变换矩阵A (shape:d*k)。而且我们知道矩阵的左乘和右乘所做的操作稍有不同(左乘变换行, 右乘变换列,因为这里面特征为n维,为列所在,所以我们这里用右乘的方式来表示)。则Y = XA, Y (shape:n*k), 只要k<d, 则称该线性变换起到了降维的作用。而主成分的判别标准是数据点向某一个方向投影,在这个方向上数据点的投影所构成的分布方差最大(方差最大是因为方差是用来描述一堆数据的分布聚集程度,我们一方面想通过投影的方式来降低维度(为啥投影能降低维度?因为投影转化为数学语言就是向量的内积,那么内积的结果是个数,则代表数据经过投影操作以后(内积)数据会降维)另一方面又想投影以后的数据有足够的代表性(这个通过方差来量化)。所以基于这些考虑最后PCA的过程就是:

Step1:将数据中心化(诚然,如果仅仅是用纯特征值分解Eigen-value Decomposition(EVD),是不需要提前(提前并不表示不执行)做数据中心化的,但是在算法实现中一般不会用EVD的方式来

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值