
- 将n维特征映射到k维,这全新的k维正交特征就是主成分。
- 这k维向量中,第一个维度选取原始数据中方差最大的方向;第二个维度选取与第一个坐标正交的平面中,方差最大的一个;第三个维度选取与前两个维度正交的平面中方差最大的一个。以此类推,得到k维向量。所以大部分方差都包含在前面k个维度中,后几个几乎为0。
所以PCA本质上是只保留包含大部分方差的维度特征,忽略方差几乎为0的特征,从而实现降维。
推论:从PCA原理可知,PCA针对特征信息比较冗余的情况处理效果比较好,因为冗余特征本质上就是存在一定相关性的特征,对应的方差就会小,从而在计算PCA过程中,这类特征就会被丢弃。
但是针对高维稀疏特征、或者高维不相关的特征,PCA效果一定很差,因为会丢失很多信息。这种情况下的降维就需要具体情况具体分析。比如lightgbm模型,里边为了降维,用到了exclusive feature bundling(互斥特征绑定)算法,其假设特征间存在一定情况的互斥性,这个时候也可以用较少的存储来表达其它特征,从而达到降维的目的。
理解PCA所需的一点数学:
- 样本方差
这里的分母是,原因在于这是样本估计的方差,为了尽量逼近真实的方差,所以除以
,相当于无偏估计。
- 样本协方差
(1)中的方差其实只有一个维度。假设样本有两个维度,那样本方差可表示为
但是这个时候就不叫样本方差了,而是叫协方差,即
其中
备注:平均数的平均数还是原数,所以E[E(X)]=E(X)。
结论:方差的计算仅针对某一维度而言,即同一特征的不同样本。而协方差必须满足至少二维特征,公式(3)给出的样本间关于X,Y两个维度的协方差。所以方差是协方差的特例。
特性:
a. 协方差为正,正相关;为负,负相关;为0,相互独立。
b. Cov(a,a)其实就是样本关于特征a的方差。当样本有n维特征时,样本间的协方差其实就是其对称方阵
举例:
求每个特征的均值
每个样本减去其对应特征的均值
所以
这是我的比特币地址,欢迎打赏
1K8yPxiHvkxzaiDiH8CGApZoRbdvz5xo8P