三个正交方向是一致么_施密特正交变换

9e2d691860fc8452c94a3c0274658479.png

6c4fe2928ff9c1aa09757423186b3e2b.gif 实对称矩阵(2):Schmidt正交化

52285265a98f35b0f7202ef8313ad59a.png

01 前言 (1)今天我们来讨论实对称矩阵中一个非常重要的命题, 向量的Schmidt正交化。 (2)①首先, Schmidt正交化公式的记忆就是很多同学比较头疼的问题, 如何理解Schimidt正交化的过程?为什么经过这样的处理, 向量就一定正交化了? ②我们平时使用Schmidt正交化主要是处理实对称矩阵同一特征值下非正交向量, 那么经过Schmidt正交化后的向量还是原特征值的特征向量么, 为什么? (3)①Schmidt正交化的过程其实就是一个“减去投影向量”的正交化过程, 具体分析请参考视频讲解。请注意β在α方向上的投影向量表示的模型, 理解后对Schmidt正交化公式的记忆会大有帮助。 ②Schmidt正交化的结果其实是对原向量组的“线性组合”, 根据特征值与特征向量的相关性质, 自然正交化后的向量依然是原特征值的特征向量。 (4)视频中我亦从数值计算角度对Schmidt正交化做了验证, 这里的计算同样是基本功, 请大家熟练掌握。 02 题目

699752a528f887d2274ef2348e8014d0.png

03 讲解 04 文稿

caf194441014e748f1dea7d6212029bf.png

2149bf4089e357f6bbbb1a3c06501714.gif

72c9a80c7104c8ddcf30c1e981d781b2.png

8de0e5cf2463627ce01f50d61edb453f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值