三个正交方向是一致么_施密特正交变换

博客围绕三个正交方向是否一致展开探讨,涉及施密特正交变换相关内容,但具体结论因内容缺失暂不明确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9e2d691860fc8452c94a3c0274658479.png

6c4fe2928ff9c1aa09757423186b3e2b.gif 实对称矩阵(2):Schmidt正交化

52285265a98f35b0f7202ef8313ad59a.png

01 前言 (1)今天我们来讨论实对称矩阵中一个非常重要的命题, 向量的Schmidt正交化。 (2)①首先, Schmidt正交化公式的记忆就是很多同学比较头疼的问题, 如何理解Schimidt正交化的过程?为什么经过这样的处理, 向量就一定正交化了? ②我们平时使用Schmidt正交化主要是处理实对称矩阵同一特征值下非正交向量, 那么经过Schmidt正交化后的向量还是原特征值的特征向量么, 为什么? (3)①Schmidt正交化的过程其实就是一个“减去投影向量”的正交化过程, 具体分析请参考视频讲解。请注意β在α方向上的投影向量表示的模型, 理解后对Schmidt正交化公式的记忆会大有帮助。 ②Schmidt正交化的结果其实是对原向量组的“线性组合”, 根据特征值与特征向量的相关性质, 自然正交化后的向量依然是原特征值的特征向量。 (4)视频中我亦从数值计算角度对Schmidt正交化做了验证, 这里的计算同样是基本功, 请大家熟练掌握。 02 题目

699752a528f887d2274ef2348e8014d0.png

03 讲解 04 文稿

caf194441014e748f1dea7d6212029bf.png

2149bf4089e357f6bbbb1a3c06501714.gif

72c9a80c7104c8ddcf30c1e981d781b2.png

8de0e5cf2463627ce01f50d61edb453f.png

### 施密特正交化后的操作步骤及应用 #### 正交基的标准化 完成施密特正交化后得到的一组正交向量可以进一步被单位化,形成标准正交基。具体做法是对每一个正交向量除以其自身的范数: \[ \mathbf{u}_i = \frac{\mathbf{v}_i}{\|\mathbf{v}_i\|} \] 其中 $\mathbf{v}_i$ 是通过施密特正交化获得的第 $i$ 个正交向量[^1]。 #### QR分解的应用 利用施密特正交化的结果可以直接构建矩阵的QR分解。设原矩阵为A,则可以通过施密特正交化将其拆解成两个矩阵Q和R的形式: - Q是一个列向量构成的标准正交基组成的方阵; - R是一个上三角形矩阵,其元素表示原始向量投影到相应子空间上的系数。 这种分解方式在求解最小二乘问题、特征值计算等方面有着重要价值[^2]。 ```matlab % 基于MATLAB实现简单的QR分解示例 function [Q, R] = qr_decomposition(A) m = size(A, 1); n = min(size(A)); % 初始化Q,R矩阵 Q = zeros(m,n); R = zeros(n); for j=1:n v = A(:,j); for i=1:j-1 R(i,j) = Q(:,i)' * A(:,j); v = v - R(i,j)*Q(:,i); end R(j,j) = norm(v); if (abs(R(j,j))>eps) Q(:,j)=v/R(j,j); else error('Matrix is rank deficient.'); end; end end ``` #### 应用于信号处理领域 在信号处理方面,经过施密特正交化处理的数据可以帮助消除冗余信息并提高后续分析算法效率。例如,在多通道传感器数据融合过程中,通过对各路输入信号实施此变换可有效降低噪声干扰影响,提升目标检测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值