实对称矩阵(2):Schmidt正交化
01
前言
(1)今天我们来讨论实对称矩阵中一个非常重要的命题, 向量的Schmidt正交化。
(2)①首先, Schmidt正交化公式的记忆就是很多同学比较头疼的问题, 如何理解Schimidt正交化的过程?为什么经过这样的处理, 向量就一定正交化了?
②我们平时使用Schmidt正交化主要是处理实对称矩阵同一特征值下非正交向量, 那么经过Schmidt正交化后的向量还是原特征值的特征向量么, 为什么?
(3)①Schmidt正交化的过程其实就是一个“减去投影向量”的正交化过程, 具体分析请参考视频讲解。请注意β在α方向上的投影向量表示的模型, 理解后对Schmidt正交化公式的记忆会大有帮助。
②Schmidt正交化的结果其实是对原向量组的“线性组合”, 根据特征值与特征向量的相关性质, 自然正交化后的向量依然是原特征值的特征向量。
(4)视频中我亦从数值计算角度对Schmidt正交化做了验证, 这里的计算同样是基本功, 请大家熟练掌握。
02
题目
03
讲解
04
文稿
三个正交方向是一致么_施密特正交变换
最新推荐文章于 2023-12-28 23:45:42 发布