时域特征偏度_时域分析——有量纲特征值含义一网打尽

本文介绍了时域特征值中的有量纲参数,如最大值、最小值、均值、方差等,阐述了它们的物理含义和应用场景。均值代表信号的平均,方差描述信号的离散程度,标准差则提供了与原始信号统一量纲的数据离散度。此外,还讲解了均方根值(RMS)的有效值概念以及在机器学习中用作误差量度的均方误差(MSE)和均方根误差(RMSE)。
摘要由CSDN通过智能技术生成

在之前的文章(Mr.括号:信号时域分析方法的理解(峰值因子、脉冲因子、裕度因子、峭度因子、波形因子和偏度等))里对时域指标做过一些分析。最近由于新建立一个公众号(括号的城堡)将会对以前讲过的内容进行系统的梳理。内容将在公众号首发,欢迎大家关注。

时域特征值是衡量信号特征的重要指标,时域特征值通常分为有量纲参数与无量纲参数。

所谓“量纲”,简单地理解就是“单位”。有量纲的参数就是有单位的,比如平均值,一段温度信号(单位℃)的平均值依旧是℃;无量纲的参数没有单位,无量纲量常写作两个有量纲量之积或比,但其最终的纲量互相消除后会得出无量纲量,比如,应变是量度形变的量,定义为长度差与原先长度之比。

有量纲的特征值往往具有直观的物理含义,是最为常用的特征指标。有量纲特征值主要包括:最大值、最小值、峰峰值、均值、方差、标准差、均方值、均方根值(RMS)、均方误差(MSE)、均方根误差(RMSE)、方根幅值等。

1.均值

均值、方差、均方值、均方根值之间有内在的联系。

均值是信号的平均,是一阶矩,可以表示为:

2.均方值

均方值是信号的平方的平均(信号→平方→平均值),代表了信号的能量,是二阶矩,可以表示为:

3.方差

方差是每个样本值与全体样本值的平均数之差的平方值的平均数,代表了信号能量的动态分量(均值的平方是静态分量),反应数据间的离散程度,是二阶中心距,可以表示为:

方差的不同表达方式,可以看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值