自动驾驶工具箱-车道保持辅助与车道检测
最小二乘法多项式曲线拟合,是常见的曲线拟合方法,有着广泛的应用,这里在借鉴最小二乘多项式曲线拟合原理与实现的原理的基础上,介绍如何在OpenCV来实现基于最小二乘的多项式曲线拟合。
概念
最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。
原理
给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi处的偏差δi= φ(xi)-y,i=1,2,...,m。
常见的曲线拟合方法:
1.使偏差绝对值之和最小
2.使偏差绝对值最大的最小
3.使偏差平方和最小
按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:
1. 设拟合多项式为:
2.各点到这条曲线的距离之和,即偏差平方和如下:
3.为了求得符合条件的a值,对等式右边求ai偏导数,因而我们得到了:
.......
4.将等式左边进行一下化简,然后应该可以得到下面的等式: