一个开箱即用的物联网项目,开源免费可商用

一、平台简介

今天给大家推荐一款开源的物联网项目,简单易用,非常适合中小团队和个人使用,项目代码和文档完全开源,个人和公司都可以应用于商业项目,只需要保留开源协议文件即可。

本项目可应用于智能家居、农业监测、水利监测、工业控制,车联网,视频联动等场景,支持兼容主流物联网操作系统,非常适合二开。

系统架构

一个开箱即用的物联网项目,开源免费可商用

技术栈

一个开箱即用的物联网项目,开源免费可商用

系统功能

1.框架系统功能

一个开箱即用的物联网项目,开源免费可商用

2.物联网系统功能

一个开箱即用的物联网项目,开源免费可商用

界面一览

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

一个开箱即用的物联网项目,开源免费可商用

开源地址

https://Gitee.com/mzmedia/mz-media

### 复现 Vision Transformer 模型的详细指南 为了成功复现 Vision Transformer (ViT) 模型,需遵循一系列严谨的操作流程。这不仅涉及理论理解还涵盖了实际编码实现。 #### 准备工作环境 安装必要的依赖库对于项目启动至关重要。推荐使用 Anaconda 创建独立 Python 环境来管理包版本控制[^1]: ```bash conda create --name vit_env python=3.8 conda activate vit_env pip install torch torchvision transformers matplotlib numpy pandas scikit-learn tensorboard opencv-python ``` #### 数据集准备 获取并预处理数据集是训练 ViT 的基础步骤之一。通常采用 ImageNet 这样的大规模图像分类数据库作为输入源。确保下载官方提供的验证集用于测试模型性能,并按照特定格式整理文件夹结构以便后续加载器读取[^2]。 #### 构建 Vision Transformer 结构 定义核心组件——多层感知机(MLP)、注意力机制以及位置嵌入等部分构成完整的 ViT 架构。下面给出简化版 PyTorch 实现代码片段展示如何搭建此类网络架构: ```python import math from functools import partial import torch.nn as nn class PatchEmbed(nn.Module): """ 将图片切分成多个patch """ def __init__(self, img_size=(224, 224), patch_size=(16, 16)): super().__init__() self.proj = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class Attention(nn.Module): """ 自注意模块 """ ... # 完整类定义省略 ... class VisionTransformer(nn.Module): ... # 整合上述各部件形成最终模型 ... ``` #### 训练过程配置 设置超参数如学习率、批次大小、优化算法选择等因素直接影响到收敛速度与泛化能力。建议参考原始论文中的设定值进行初步尝试,在此基础上通过实验调整找到最优组合方案。 #### 测试评估指标 完成一轮迭代之后应当利用预留出来的测试样本计算准确度得分以及其他评价标准比如 F1-Score 或者 AUC 来衡量当前状态下的表现情况。同时记录下每次运行的结果便于后期对比分析不同策略的效果差异。 #### 可视化工具辅助开发 借助 TensorBoard 等可视化平台实时监控损失函数变化趋势有助于及时发现问题所在进而采取相应措施加以改进。此外还可以绘制混淆矩阵直观呈现各类别之间的预测关系帮助定位潜在偏差点位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值