梯度下降与牛顿法(Python)

最近两天一直在复习李航老师的《统计学习方法》这本书上面的知识,看到了优化算法。推导了梯度下降与牛顿法的计算公式,并最终实现了相应python代码。想着记录下来,所以我就用这篇文章来记录一些要点。

梯度下降

关于梯度下降没什么好说的了,就主要是利用函数的一阶导。代码如下:

def gradient_descent_ld(grad, cur_x=0.1, learning_rate=0.01, precision=0.0001, max_iters=1000):
    """
    一维问题的梯度下降法
    :param grad: 目标函数的梯度
    :param cur_x: 当前x值,通过参数可以提供初始值
    :param learning_rate: 学习率,也相当于设置的步长
    :param precision: 设置收敛精度
    :param max_iters: 最大迭代次数
    :return: 局部最小值x
    """
    for i in range(max_iters):
        grad_cur = grad(cur_x)
        # 当梯度趋近于0时,视为收敛
        if abs(grad_cur) < precision:
            break
        cur_x = cur_x - grad_cur * learning_rate
        print("第%d次迭代的x值为:%f" % (i, cur_x))
    print("局部最小值 x=", cur_x)
    return cur_x

上面这段代码里的learning_rate步长是固定的,在[0,1]直接。但是根据定义来说,这应该是随着迭代的次数增加而变小的。这个应该不难理解,所以我在下面又实现了变步长的方法。

def gradient_descent_ld_decay(grad, cur_x=0.1, learning_rate=0.01, precision=0.0001, max_iters=1000, decay=0.5):
    """
    一维问题的梯度下降法,变步长
    :param grad: 目标函数的梯度
    :param cur_x: 当前x值,通过参数可以提供初始值
    :param learning_rate: 学习率,也相当于设置的步长
    :param precision: 设置收敛精度
    :param max_iters: 最大迭代次数
    :param decay: 学习率衰减因子
    :return:
    """
    for i in range(max_iters):
        # 新的步长
        learning_rate = learning_rate * 1.0 / (1.0 + decay * i)
        grad_cur = grad(cur_x)
        # 当梯度趋近于0时,视为收敛
        if abs(grad_cur) < precision:
            break
        cur_x = cur_x - grad_cur * learning_rate
        print("第%d次迭代的x值为:%f" % (i, cur_x))
    print("局部最小值 x=", cur_x)
    return cur_x

其实步长变化公式就是这一步:

牛顿法

牛顿法其实就是求函数二阶导,通过二阶导的正负性来进一步判断极值的存在。

 

所以,这时候要判断函数的二阶导数。如果函数是多元函数的话,这时候就要引入一个新的概念了,叫海森矩阵(Hessian).具体怎么求,我这儿就不多说了,我们只需要记住一点。如果海森矩阵的行列式的值大于0,说明该函数有极值。我这儿要解释的一点就是关于向量对向量的求导了。具体是来自于这两步公式:

等式两边对x向量求导,可得:

这个当时有点让我迷糊了,其实可以转化为以下不等式:

其中,假设A为二阶矩阵,x为二维列向量。

其实,暴力解是可以得到答案的,比如下图所示:

但总觉得这样有失美观,所以找了一位数学系的同学,帮我重新整理了思路。她首先是把泰勒展开那两步公式给换了,如下图所示:

这才恍然大悟,代码如下:

def newton(f, x, iters):
    """
    实现牛顿法
    :param f: 原函数
    :param x: 初始值
    :param iters: 遍历的最大epoch
    :return:
    """
    Hessian_T = np.linalg.inv(hessian(f, x))
    H_G = np.matmul(Hessian_T, jacobian(f, x))
    x_new = x - H_G
    print("第1次迭代后的结果为:", x_new)
    for i in range(1, iters):
        Hessian_T = np.linalg.inv(hessian(f, x_new))
        H_G = np.matmul(Hessian_T, jacobian(f, x_new))
        x_new = x_new - H_G
        print("第"+str(i+1)+"次迭代后的结果为:", x_new)
    return x_new

 完整版代码此处可以下载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习的学习者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值