本文介绍一篇光流检测的文章。
RAFT: Recurrent All-Pairs Field Transforms for Optical Flowarxiv.org princeton-vl/RAFTgithub.com
什么是光流(Optical Flow)?
例如,把一个视频的前后两帧图片作为输入,Optical Flow能够计算出第一帧图片里面的每个像素的偏移量。或者说,对第一帧图片里面的每个像素,计算出第二帧图片里面的哪个像素与其对应。或者说,在前后两帧图片的像素之间找一个对应关系。
RAFT计算流程
假设输入的前后两帧图片是
一、计算图片feature
用一个共享的多层网络
二、计算相关性
这步是文章的一个核心。假设
本文详细介绍了RAFT方法在2D图片光流检测中的应用。首先阐述了光流的基本概念,接着解析了RAFT的计算流程,包括计算图片特征、建立相关性矩阵、迭代计算光流以及监督训练过程。文章强调了多分辨率相关性矩阵和GRU迭代优化在提升光流计算准确性方面的作用。
最低0.47元/天 解锁文章
4957

被折叠的 条评论
为什么被折叠?



