本文概述
可以将许多转换或转换序列组合为一个称为合成的转换。所得矩阵称为复合矩阵。合并的过程称为串联。
假设我们要绕任意点旋转, 那么我们可以通过三个变换的序列来执行旋转
翻译
回转
逆向翻译
这些数量的转换的顺序不得更改。如果矩阵以列形式表示, 则通过从右到左依次乘以矩阵来执行复合变换。从上一个矩阵获得的输出与新的矩阵相乘。
显示复合转换的示例
放大是相对于中心。为此, 将执行以下一系列转换, 并将所有转换合并为一个
步骤1:将对象保持在如图(a)所示的位置
步骤2:平移对象, 使其中心与原点重合, 如图(b)所示。
步骤3:通过使对象保持原点缩放对象, 如图(c)所示
步骤4:再次完成翻译。第二翻译称为反向翻译。它将对象放置在原点位置。
以上转换可以表示为TV.STV-1
注意:两种旋转方式用于表示矩阵, 一种是列方法。另一种是行方法。
组成或连接矩阵的优势
它的转变变得紧凑。
操作次数将减少。
与矩阵相比, 用于定义方程式形式的变换的规则很复杂。
两种翻译的组成
令t1 t2 t3 t4为翻译向量。它们是两个翻译P1和P2。 P1和P2的矩阵如下所示。 P1和P2用齐次矩阵表示, P将是乘法后获得的最终变换矩阵。
以上结果矩阵显示两个连续的翻译是加法运算。
两个旋转的组成:两个旋转也是可加的
两个缩放的组成:两个缩放的组成是相乘的。令S11和S12为要相乘的矩阵。