论文详解Memory Efficient Incremental learning through feature adaptation. ECCV2020 基于增量特征映射

本文探讨了一种新的基于样本回放的增量学习方法,主要关注在网络架构变化后如何将旧特征映射到新特征。通过引入特征适应网络,模型能够在不存储原始样本的情况下,仅存储特征并进行适应,降低了存储负担。实验表明,这种方法在保持高准确率的同时,相比于其他基于rehearsal的方法,如iCARL和SDC,具有更高的存储效率。特征适应网络通过多层感知机模拟特征映射,结合蒸馏损失和分类损失,实现了旧知识的保留。尽管存在额外的训练开销,但性能优于同类方法。

ECCV2020,由Google Research提出。

看标题是基于样本回放的方法。如何在网络变化之后,将旧特征映射到新特征。

类似的方法例如SDC,Semantic Drift Composition。

SDC:  SDC论文详解Semantic Drift Compensation for Class-Incremental Learning. CVPR 2020

目录

1.贡献点

1.1 基于rehearsal方法的分类

1.2 贡献点

2.框架

2.1 特征提取+分类器

2.2 蒸馏Loss

2.3 Feature Adaptation

2.4 feature adaptation network

2.5 Memory尺寸的降低

3. 实验

3.1 存储效率

3.2 准确率

4. 评价


1.贡献点

模型不存储样本,只存储样本提取出的feature. 本文通过多层感知机实现feature的新适应。

1.1 基于rehearsal方法的分类

基于rehearsal的方法分为如下几类:

  1. Non-rehearsal: 即不需要rehearsal, 例如LwF直接用新旧网络之间进行知识蒸馏,不需要存储旧样本。
  2. Exemplars: 直接存储原始图片,例如iCARL(Incremental Classifier and Representation Learning),直接将原始图片存储为exemplars.
  3. Generated images: 利用GANs生成fake images
  4. Feature based methods: 基于特征存储的方法,直接利用memory存储网络特征。

1.2 贡献点

  1. 如何在特征提取网络变化之后,对应的存储的旧特征也应该发生变化,本文用多层感知机模拟这种映射。
  2. 本文方法存储负担对比同类方法极小
  3. 性能达到SOTA

2.框架

如图所示,模型根据新图片提取出特征,同时需要对旧特征进行适应。因为相应的增量模型发生了变化,旧存储的特征也会发生变化。

2.1 特征提取+分类器

依然是非常常见的,特征提取模块加上分类器模块。假定特征提取模块是hΘ(), 分类器模块是gW(), 非常常见的结构就是:

对应的loss,比如交叉熵Loss:

这个模型结构太常见了,特征提取模块加上分类器

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祥瑞Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值