Supervised Contrastive Replay 论文详解 通过NCM分类器和图片回放实现增量学习

论文地址:[2103.13885] Supervised Contrastive Replay: Revisiting the Nearest Class Mean Classifier in Online Class-Incremental Continual Learning (arxiv.org)

Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning

基于原始图片rehearsal的增量学习方法

目录

1.贡献点

2.方法

2.1 模型框架

2.2 NCM分类器

2.3 supervised contrastive learning(SCL)

2.4 supervised contrastive replay (SCR)

3.实验

4.总结


1.贡献点

本文的方法是基于Rehearsal的增量学习方法。因为Memory之中的原始图片也经过了特征提取模块,所以本文基于的是直接存储原始图片的rehearsal方法。

本文研究如何让特征提取模块提取出的特征更具判别性。

在线增量任务,大量的研究说明NCM分类器会比softmax分类器取得更好的结果。通过作者的观测,进行了大量的NCM和softmax分类器的对比实验,得到了一些可靠的结果。

本文提出了SCR(supervised contrastive replay),这个方法可以让同类的样本在embedding空间更接近,不同类的样本在embedding空间距离更远。

本文通过大量的实验对比,SCR的方法在多个数据集上,比SOTA方法具有更明显的优势。

可看效果:

 

基于不同特征回放的特征可视化,可以看出本文的方法SCR,可以取得较好的聚类效果。同类特征可视化后更近,不同类特征可视化之后更远,不清晰分类边界清晰。

2.方法

2.1 模型框架

训练过程中,训练的batch来自两个地方,一个来自于增量数据Bn,另一个来自于Memory, Bm,m存在于buffer之中。训练过程流程如下:输入经过encoder进行特征提取,再经过projection head然后送入 Supervised contrastive loss进行训练。相当于模型有两个网络,一个是特征提取模块,另一个映射模块。

test的过程,encoder之后的projection head映射模块被移除,直接将特征送入到NCM分类器中进行分类。

2.2 NCM分类器

NCM分类器是近两年增量学习之中广泛采用的分类器,之所以采用NCM分类器,与CNN分类器的以下缺点有关:

  1. FC层和softmax分类器很容易被类别不均衡问题所困扰。
  2. task-recency bias : 模型总是偏向于最近训练过的任务。

根据本文的实验,

NCM分类器与memory buffer相结合,会取得更好的效果。

对比了SCR与supervised contrastive loss: 同类的样本在embedding空间更接近,不同类的样本在embedding空间距离更远。

NCM分类相比softmax分类器的优点:

  1. 分类器新类别到来之后,softmax分类器的FC层需要变化结构,NCM无需变化结构
  2. 编码器权重与模型权重是耦合的,如果编码器的权重改变,则模型权重也需要跟着改变。NCM分类器对于encoder的变化时更加鲁棒,不用像FC层一样,要与encoder的权值绑定。
  3. task-recency bias 模型训练完成之后偏向于最近训练的task,NCM不会引入task- recency bias,因为各个任务在NCM之中是等权重的。

后文实验Figure5可以看出,各种增量学习方法之中,NCM分类器的优势明显优于softmax分类器

2.3 supervised contrastive learning(SCL)

SCL的目的是,将同样类别的样本在embedding空间上的距离更近,不同类样本在embedding空间上的距离更远。

假定样本是x,经过增强Aug()后的样本x^=Aug(x), 编码网络Enc()将输入转化为超球R上的点。 r=Enc(x)∈R

投影网络将r投影为向量z  z=Proj(r) ∈R

相当于流程 样本x 数据增强x^,  编码网络Enc(),  投影网络 Proj()

物体经过编码网络和映射网络后的r和d都是超球面上的点

对应SCL loss是:

此loss的目的是,让当前样本与同类样本的投影距离更近,与非同类样本的投影距离更远。

 

  1. zi表示样本经过编码,投影之后的向量
  2. zp表示同类正样本经过编码,投影之后的向量
  3. zj表示非同类样本经过编码投影之后的向量
  4. tao是温度系数

2.4 supervised contrastive replay (SCR)

假定新任务batch为Bn,旧任务batch为Bm,(memory,旧任务从memory之中取出),

训练过程通过SCL loss更新映射网络和编码网络的权重。包括Enc网络和Proj网络,

测试阶段删除掉Proj网络,相当于样本经过Enc网络之后的特征直接当作用于分类的特征。

算法框图如下:

关于memory buffer如何存储和更新,不是此文探讨的重点,

因此此文参考了ASER方法,Dongsub shim: Online class-incremental continual with adversarial shapley value.  AAAI 2021和

GSS (NIPS 2019) : Gradient-Based Sample Selection, a replay method that diversifies the gradients of the samples in the replay memory

3.实验

figure 6显示了本文的方法和其他主流方法对比

关于SCR的消融实验:

b是memory buffer的处理方式的对比,即选取什么样的特征存储于分类器之中,有点惊异, Random的memory选取方式效果最好,比GSS和ASER的方法都好。难道说明,GSS(NIPS2019)和ASER(AAAI2021)的方式居然不如随机抽取的方式好?

4.总结

将基于原始样本回放的方法与NCM分类器相结合,SCR的主要贡献在于提取出具有判别性的特征。

本文中值得注意的是,样本选取的方式,消融实验之中,居然memory buffer用随机的方式选取的准确率最好,比GSS(NIPS2019)和ASER(AAAI2021)的方式都好,有点反常,值得分析一下原因。

 

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祥瑞Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值