计算机视觉最新进展概览(2021年6月13日到2021年6月19日)

1、Robustness of Object Detectors in Degrading Weather Conditions**
最先进的自动驾驶目标检测系统在晴朗的天气条件下取得了良好的效果。然而,这种自动安全关键系统也需要在退化的天气条件下工作,如雨、雾和雪。不幸的是,大多数方法只对KITTI数据集进行评估,该数据集只包含晴朗的天气场景。在本文中,我们解决了这个问题,并在真实天气条件下捕获的数据上对单模态和双模态架构进行了最详细的评估。我们分析了这些体系结构在退化的天气条件下的性能退化。我们证明了在晴朗天气下表现良好的目标检测体系结构可能无法处理退化的天气条件。我们也进行消融研究的双模结构和显示他们的局限性。
2、End-to-End Semi-Supervised Object Detection with Soft Teacher
本文提出了一种端到端半监督的目标检测方法,而不是以往更复杂的多阶段方法。通过端到端的训练,逐步提高了class中伪标签的质量,越来越准确的伪标签反过来又有利于目标检测训练。在此框架下,我们还提出了两种简单而有效的技术:一种软teacher机制,其中每个未标记边界框的分类损失由教师网络产生的分类分数来衡量;一种盒抖动方法,用于选择可靠的伪框进行框回归学习。在COCO基准上,所提出的方法在1%、5%和10%的标记比率下,均优于以往的方法。此外,我们的方法被证明在标记数据量相对较大时也表现良好。例如,它可以利用123K未标记的COCO图像,利用+3.6 mAP的完整COCO训练集训练出40.9 mAP基线检测器,达到44.5 mAP。在目前最先进的基于Swin transformer的对象检测器(test-dev上为58.9 mAP)上,通过+1.5 mAP仍能显著提高检测精度,达到60.4 mAP,通过+1.2 mAP提高实例分割精度,达到52.4 mAP,推动了新的技术水平。
3、Dynamic Head: Unifying Object Detection Heads with Attentions
在目标检测中,定位和分类相结合的复杂性导致了方法的蓬勃发展。以往的工作试图提高各种目标检测头的性能,但未能给出一个统一的视图。在本文中,我们提出了一种新的动态头部框架,以统一目标检测头部与注意。该方法通过将特征层次之间的自注意机制进行尺度感知、空间位置之间的自注意机制进行空间感知、输出通道内的自注意机制进行任务感知,在不增加计算开销的情况下显著提高了目标检测头的表示能力。进一步的实验证明了所提出的动态头在COCO基准上的有效性和效率。标准ResNetx - 101宽带骨干,我们很大程度上改善性能受欢迎的对象探测器,实现一个新的先进的54.0mAP。此外,通过最新的Transformer骨架和额外的数据,我们可以将当前的最佳COCO结果创下新高60.6。
4、Robust Out-of-Distribution Detection on Deep Probabilistic Generative Models
在机器学习系统中,OOD检测是保证系统可靠性和安全性的一项重要任务。深度概率生成模型通过估计数据样本的可能性来促进OOD检测。然而,这样的模型经常把一个可疑的高可能性分配给一个特定的离群值。最近的一些研究通过使用辅助异常值训练神经网络来解决这个问题,辅助异常值是通过干扰输入数据产生的。在本文中,我们发现这些方法对于某些OOD数据集是失败的。因此,我们提出了一种新的检测指标,运行时没有异常暴露。我们观察到,我们的度量与以前的异常值暴露方法相比,对图像的不同变化是鲁棒的。此外,我们提出的分数不需要辅助模型,也不需要额外的训练。相反,本文从一个新的角度利用似然比统计量从给定的单一深度概率生成模型中提取真实属性。我们还应用了一种新的数值近似,以使快速实现。最后,我们对各种概率生成模型进行了综合实验,结果表明我们的方法达到了最先进的性能。
5、 Domain Adaptive SiamRPN++ for Object Tracking in the Wild
得益于大规模的训练数据,基于Siamese的目标跟踪的最新进展已经在普通序列上取得了引人注目的结果。而基于Siamese的跟踪器假定训练和测试数据遵循相同的分布。假设有一组有雾或有雨的测试序列,不能保证在正常图像上训练的跟踪器在其他领域的数据上表现良好。训练数据和测试数据之间的域转移问题已经在目标检测和语义分割领域进行了讨论,但在视觉跟踪方面尚未进行研究。为此,在siamrpn++的基础上,我们引入了域自适应siamrpn++,即dasiamrpn++,以提高跟踪器的跨域可移植性和鲁棒性。在A-distance理论的启发下,提出了两个领域自适应模块:像素领域自适应(Pixel domain Adaptation, PDA)和语义领域自适应(Semantic domain Adaptation, SDA)。PDA模块对模板的特征图和搜索区域图像进行对齐,消除了由于天气、光照等原因造成的像素级域漂移。SDA模块将跟踪目标的出现特征表示对齐,以消除语义级的域漂移。PDA和SDA模块通过对抗性训练学习领域分类器来减小领域差异。域分类器强制网络学习域不变的特征表示。在两个不同域的标准数据集上进行了大量的实验,包括合成雾和红外序列,证明了所提跟踪器的可移植性和域适应性。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值