近年来,人工智能(AI)对包括地球系统科学在内的各个领域产生了深远的影响。AI 提升了天气预报、模型模拟、参数估计以及极端事件预测的能力。然而,极端事件预测面临着独特的挑战,例如从嘈杂、异构且标注有限的数据中开发准确的预测器。本文将回顾 AI 如何被用于分析极端事件(如洪水、干旱、野火和热浪),并强调创建准确、透明和可靠的 AI 模型的重要性。我们将探讨处理数据有限、实时整合信息、部署模型以及使其易于理解的障碍,这些都是获得利益相关者信任和满足监管需求的关键。我们将概述 AI 如何帮助更有效地识别和解释极端事件,从而改善灾害应对和沟通。我们强调跨不同领域合作的必要性,以创建实用、易懂和值得信赖的 AI 解决方案,用于分析和预测极端事件。此类合作努力旨在增强灾害准备和灾害风险降低。
关键词: 人工智能,极端事件,干旱,热浪,洪水,检测,预测,建模,理解,归因,可解释 AI,因果推断,风险沟通
1. 引言
近年来,天气和气候极端事件的发生频率、强度和持续时间都在增加,给社会稳定、经济安全、生物多样性丧失和生态完整性带来了前所未有的挑战 [1]。这些事件——从强风暴和洪水到干旱和热浪——对人类生计和自然环境产生了深远的影响,往往会带来持久甚至不可逆转的后果。对极端事件进行建模、描述和理解是推动减缓和适应策略的关键。
在这种情况下,人工智能(AI)已经成为检测 [2]、预测 [3, 4]、分析极端事件以及生成最坏情况事件 [5] 的变革性工具,并有望在归因研究、解释和风险沟通方面取得进展 [6]。机器学习(ML),尤其是深度学习(DL)的能力,结合计算机视觉技术,正在利用气候数据(如再分析和观测)推进事件的检测和定位 [7]。量化不确定性的现代技术 [8] 是气候变化风险评估取得进展的必要步骤 [9]。将集成与 AI 模型结合使用已经推动了极端事件归因 [10]、模式识别、趋势 [11] 和气候模拟 [12] 的发展。然而,AI 不仅擅长预测,还可以解释过程(例如,通过可解释 AI [13] 和因果推断 [14]),这对决策和有效的减缓策略至关重要。从异构文本来源检索信息的最新大型语言模型 (LLM) 允许有效地整合用于沟通任务和人机交互的方法,用于极端事件和情况分析 [15]。
本文回顾了 AI 在极端事件分析中的作用,以及其在极端事件分析中的挑战和机遇。AI 驱动的极端事件分析的通用流程(参见图 1)囊括了从数据收集和预处理到生成输出的整个工作流程,例如预测、模式、趋势、气候归因和因果关系。该框架还强调了 AI 过程的迭代性质,其中输出直接服务于其目的,并用于告知和改进数据收集、预处理和假设制定。然而,开发准确、可操作、可解释和值得信赖的 AI 模型仍然是一个重大挑战。数据稀缺、需要高维数据处理以及 AI 模型的解释和解释是必须解决的关键挑战。此外,有效且合乎道德地传达风险以及将 AI 工具与现有系统集成以确保操作可行性和科学稳健性是非凡的任务,需要持续的研究和开发。
我们提供了对 AI 驱动的极端事件分析流程的全面概述,包括建模、检测、预测和沟通(第 2 节),并讨论了关键挑战(第 3 节)。我们展示了 AI 在干旱、热浪、野火和洪水方面的应用案例研究(第 4 节),最后确定了 AI 在极端事件方面的主要挑战和未来研究机会(第 5 节)。
2. AI 方法回顾
本节回顾了极端事件分析所有方面的主要方法(参见表 1):数据、建模、理解和可信度,以及沟通和部署方面的最后一英里。
2.1 极端事件建模
用于极端事件建模的 AI 方法可以分为检测 [16]、预测 [17] 和影响评估 [18] 任务。得益于 DL 的出现和成功,所有这些任务都可以通过设计利用时空和多源地球数据特征的数据驱动模型来解决,从气候变量到原位测量和卫星遥感图像(参见图 2 [顶行])。
表 1: 四个主要模块(数据、建模、理解和可信度,以及沟通和部署方面的最后一英里)中极端事件分析的全面分类,涉及它们的 任务、标准方法和当前的 AI 方法。
方面 | 任务 | 标准方法 | 当前 AI 方法 |
---|---|---|---|
数据 | 数据收集、协调、预处理 | 为下游任务准备数据 | 基于 ML 的降噪、填补空白、数据融合方法 |
特征选择和提取 | 找到数据的低维信息表示 | 通过特征重要性或因果特征选择进行特征选择。降维技术和因果表示学习 | |
极端事件模拟 | 在不同场景下模拟极端事件,具有正确的频率和幅度 | 物理模型和模拟 | |
建模 | 检测 | 阈值或百分位数方法和极值理论 (EVT) | 异常值检测、单类分类、基于重建和概率方法 |
预测 | 对未来潜在的极端事件进行预测 | 数值天气预报模型和专家判断和启发式方法 | |
影响评估 | 估计极端事件对社会、经济和自然环境的影响 | 专家判断、启发式方法和现场数据收集 | |
理解和可信度 | 极端事件归因 | 量化人为强迫对极端事件的影响 | 概率/统计事件归因、故事线方法、专家判断和 elicitation |
可解释性 | 使黑盒 ML 方法的推理对人类来说易于理解 | 透明和可解释的设计模型 | |
因果关系 | 识别和分析直接导致极端事件发生的因素 | 统计和基于相关性的分析、基于模拟和实验研究 | |
不确定性量化 | 识别和量化不确定性来源 | 敏感性分析和参数分布 | |
最后一英里 | 操作化 | 将可信的预测模型和实时数据分析集成到预警系统中 | 手动集成到决策系统中 |
风险沟通和伦理方面 | 传达极端风险信息,确保伦理透明度、社区准备和应对 | 遵守伦理准则和标准 | |
政策和决策 | 管理和减轻极端事件的影响,确保复原力和安全 | 风险评估和管理、成本效益分析 (CBA)、多准则决策分析 (MCDA)、适应性管理和社区参与式方法 |
2.1.1 检测
在时间上地理定位地识别和识别极端事件,以将其与正常条件区分开来,对于发现气候变量之间的潜在模式和相关性至关重要。这有助于更好地理解它们的生成过程和机制,并促进它们的预测。
传统的统计方法,例如阈值或百分位数指标,已被广泛应用于检测极端事件(参见表 1)。然而,这些方法通常无法识别与专家或基于影响的检测方法相同的事件 [19]。AI 方法可以帮助将专家知识与数据驱动的方法相协调,因为它们捕获了大量观测数据中的规律性和细微关系。规范的 ML 将检测问题视为单类问题或异常值检测问题。因此,许多方法被应用 [20],并在软件包中提供 [2]。最近的进展包括深度学习,用于分割和检测高分辨率气候模型输出中的热带气旋 (TC) 和大气河流 (AR) [21] 以及极端事件的半监督定位 [22]。或者,基于重建的模型(例如,使用自动编码器)被优化以准确地重建正常数据实例,因此极端事件与较大的重建误差相关联 [23]。最后,概率方法试图通过估计数据概率密度函数 (PDF) 或其特定分位数来识别极端事件。然而,标准极值理论 (EVT) 方法难以处理时间序列数据短、非线性以及非平稳过程。其他概率 (ML) 模型依赖于代理气象和水文季节性再预测 [24]、高斯过程和非线性依赖性度量 [25] 以及多元高斯化 [26]。
2.1.2 预测
设计能够准确地模拟极端事件的预测系统对于预测未来极端事件的影响以及为决策者提供关键信息以防止损害至关重要。空间和时间预测旨在提供对地球未来状态的定量估计(表 1)。
许多 ML 算法已被提出用于确定性极端事件预测,但大多数仅应用于小区域和特定用例。预测可以使用单独的气候变量 [27] 或与卫星图像结合使用 [28]。例如,在极端干旱条件下的植被响应被建模为卫星图像的视频预测任务,同时以气候变量为条件。另一种常见的方法是直接估计定义极端事件的指标,例如洪水风险图 [29] 或干旱指数 [30]。估计的变量可以涵盖不同的提前期,具体取决于极端事件的特征,从短期预测到季节性预测 [31]。最近,基于 DL 的预测技术越来越受欢迎,因为它们能够处理大量数据,捕获复杂的非线性关系并减少手动特征工程。这些优势促成了全球模型的创建,这些模型在不同地点具有普遍性,如洪水 [32] 和野火 [33] 预测。
概率模型与确定性模型不同,它们侧重于预测未来变量状态的概率分布。概率预测对极端热浪的重要性已被强调 [34]。集成到气候模型中的基于 AI 的技术可以增强预测,例如在干旱预测 [35] 和极端对流降水降尺度 [36] 中。
2.1.3 影响评估
估计极端事件对社会、经济和环境的影响对于向公众、决策者和跨学科领域传达潜在的未来后果至关重要 [18, 37]。影响评估涉及理解系统如何对极端事件强迫做出反应。与极端事件检测和预测不同,这里的重点是与影响相关的结果,例如受伤人数、受影响的家庭或作物损失。
近年来,人们越来越关注使用 ML 预测植被状态 [4],作为估计气候极端事件对植被状态变量演变影响的一种方法 [38, 39]。最近的进展方法使用了回声状态网络 [40]、基于 ConvLSTM 的 [28, 41] 和 Transformer [42],使用高分辨率遥感和气候数据。
使用 ML 解决影响评估的另一种方法是分析概率密度函数随时间的变化。这种方法允许量化不同事件的影响,这可以用于提高我们对脆弱性驱动因素的理解 [43],例如人口迁移 [44]。或者,可以通过分析基于自然语言处理 (NLP) 和最近的大型语言模型 (LLM) 的新闻报道来检测极端事件的影响 [45]。
2.2 极端事件理解和可信度
然而,所有先前的方法都侧重于“什么”、“何时”和“何地”问题,而不是“为什么”、“如果”和“有多确定”问题。在环境科学中,人们越来越重视对可信机器学习的需求 [46]。这在极端事件中尤为重要,因为需要做出影响公共安全、健康、基础设施和资源分配的关键高风险决策。可解释 AI (xAI) 和不确定性量化 (UQ) 等学科提供了使 AI 更可靠和可信的方法(参见图 2 [中间行])。这些方法不仅有助于我们解释 AI 模型预测,而且增强了我们对极端事件本身的理解。
因果推断和极端事件归因等技术通过了解这些事件背后的机制来进一步增强 xAI 和 UQ,这对改进 AI 模型和获得决策过程的信任至关重要。
2.2.1 极端事件归因
极端事件归因 (EEA) 通过使用具有通用环流模型 (GCM) 的数值模拟来量化人为强迫(如温室气体排放)对极端气候事件可能性影响,以比较它们在观测条件(事实世界)和没有人类排放的假设情景(反事实世界)下的概率 [47](参见表 1)。存在两种主要观点:概率 EEA 使用定量统计方法来估计这种可能性(例如,由于人类排放,EE 的可能性高出 600 倍),而故事线方法模拟 EE 在不同强迫下的演变,以收集基于过程的归因陈述(例如,EE 规模的 50% 由自然变率解释) [48]。理想情况下,两种方法都应结合起来,以提供全面的理解。
已经开发了神经网络集成来模拟 GCM,创建了运行速度明显更快的代理模型 [49]。这些模型成功地根据当前条件下的全球年平均气温场预测年份,但在类似于前工业条件的假设情景中难以准确地执行 [50]。尽管关于此主题的文献很少,但 AI 在天气和气候模拟方面的最新进展 [3] 表明,气候模拟器将在不久的将来发挥重要作用,从而实现几乎实时的 EEA。
2.2.2 可解释 AI
许多模型是透明的,并且是可解释的设计,例如线性模型或决策树,但它们可能无法在复杂问题上表现良好,并且很少在极端事件中使用(参见表 1)。可解释 AI (xAI) 旨在揭示 AI 模型的决策过程。xAI 还通过揭示模型功能、学习到的关系和偏差来促进调试、改进模型和收集科学见解。最常用的 xAI 方法依赖于模型无关的蒸馏或特征归因方法 [51, 52],参见图 2。蒸馏方法,例如 SHapley Additive exPlanations (SHAP) 和 Local interpretable model-agnostic explanations (LIME),创建代理模型,并已广泛应用于地球科学和气候科学 [44, 53]。特征归因方法,例如 Partial Dependence Plot (PDP) 或 Gradient-based Class Activation Map (Grad-CAM),通过扰动输入或使用反向传播来突出显示重要特征 [54]。最近的方法使用干旱预测中的注意力来解释 DL 模型 [55],并使用原型来解释事件定位 [56]。xAI 也被用于评估气候预测 [13, 57],从而提供了一种用于模型数据互比的不可知论、数据驱动的方法。
2.2.3 因果推断
因果图编码了关于稳健系统属性的直观信息。此信息对于决定关于干预或反事实属性的查询的可识别性是必需的 [58, 59]。对于极端事件,大多数广泛使用的因果推断方法 [60, 61] 无法直接应用,因为传统的正态性和轻微异常值假设不成立,并且依赖性可能仅在极端事件中表现出来(表 1)。这促使了最近处理极端事件分析因果发现的工作,为理解极端值中的依赖关系和因果结构提供了不同的框架 [62],并在例如河流流量 [63] 中得到应用。
另一条相关的工作线侧重于回答关于气候极端事件的反事实问题,这与 EEA 相关联 [14, 64]。
2.2.4 不确定性量化
即使配备了解释性和因果方法,评估 AI 模型决策的置信度仍然至关重要,因为不准确的警告或决策会影响安全和资源 [8, 65]。了解不确定性的来源对于告知和区分天气现象的固有不确定性(偶然性)与模型中知识不足(认知性)不确定性至关重要。可以通过更多数据和额外的假设来减少后者,但不能减少前者(参见表 1)。具有 UQ 的 DL 方法最近在极端事件方面显示出希望 [34, 66]。
2.3 最后一英里:操作化、沟通、伦理和决策
AI 流程中的先前组件(方法和技术)需要进行操作化,并且必须是稳健的、可问责的和公平的,以便最终服务于基于证据的政策制定(参见图 2 [底行])。
2.3.1 操作化
操作化严格需要先前层面的到位(xAI、因果关系、UQ),以便在预警系统 (EWS) 中改进和问责解释预测,并增强灾害风险管理。ML 模型的校准 [67],尤其是在与不确定性估计相结合时,使预测的概率与现实世界中极端结果发生的可能性相一致,从而提高了可靠性和可解释性,这对于明智的决策至关重要。校准不良会导致错误的决策,例如高估或低估关键事件发生的可能性。
2.3.2 风险沟通和伦理方面
历史表明,即使是可操作的预测,如果沟通不当也会失败。例如,尽管在地中海风暴丹尼尔的登陆前四天就预测到了风暴,但沟通不当导致利比亚发生了悲惨事件,造成严重人员伤亡和流离失所 [68]。即使在德国这个发达国家,洪水的破坏性影响也与预警无效有关 [69]。这突出了稳健的 EWS 的关键需求,这些系统可以预测事件并有效地传达风险,以确保社区做好准备和应对(表 1)。
在 EWS 的背景下,误报是一个重大挑战,因为它们会导致“警告疲劳”,即公众对警报变得麻木,在实际紧急情况下可能会忽略关键警告 [70–72]。解决这个问题需要提高预测模型的准确性和信任度,改进沟通策略,并让社区参与 [73]。
2.3.3 AI 模型和数据中的伦理问题
AI 伦理治理呼吁系统尊重人类尊严,确保安全,并支持民主价值观 [74]。将 AI 用于帮助管理极端事件涉及几个基本原则:确保公平、维护隐私和实现透明度 [75, 76]。在这种情况下,大型语言模型 (LLM) 的兴起加剧了伦理风险,例如过时或不准确的数据、偏差、错误和虚假信息,这些信息通常被它们在网络数据上的大量训练所掩盖。此外,当前的 AI 模型(如生成式 AI 和 LLM)通常依赖于大型数据集,因此如果这些数据集不具有代表性,则存在强偏差的风险 [52]。空间抽样和分析对于收集地理和环境代表性、公平且无偏差的数据至关重要。像通用警报协议这样的全球倡议已经标准化了预警数据,但这些系统的成功取决于它们的包容性以及适应受影响社区多样化需求的能力,这些社区应该参与 EWS 的开发 [72, 77]。AI 通过使能够快速传播针对特定地点和个人风险因素(如靠近洪泛区或野火区)的个性化警报来增强这些系统,确保警报对所有人来说都是可理解和相关的。
实现受影响社区的包容性,尤其是在全球南方,仍然是一个重大挑战,因为集中式的“一刀切”模型通常更简单、更便宜,但不太有效地解决地方差异。设计 AI 系统,基于针对具有用户参与循环的当地社区进行微调的大型语言模型,提供了克服“一刀切”同时保持效率的绝佳机会。
2.3.4 政策和决策
即使在 AI 辅助下,人类操作员也负责实施最终决策。这意味着在充分利用生成的信息方面支持最终用户 [6]。这种操作价值通常是特定于问题的,并且取决于系统的支配性动力学和所考虑的社会经济部门。然而,量化这种价值可能并不简单,因为更准确的预测并不一定意味着最终用户做出更好的决策 [78]。当来自不同系统的多个预测可用时,用户应该解决 AI 可以提供帮助的许多问题,包括预测产品的选择、提前期、变量聚合、偏差校正以及如何应对预测不确定性。
将图 1 中的流程与利用强化学习算法来模拟最佳决策的冲击模型集成在一起,可以帮助量化 AI 增强的信息如何转化为更好的决策 [79]。通过参与式流程共同设计冲击模型,包括将最终用户纳入循环,通过更好地捕捉最终用户的需求、期望和担忧来进一步加强基于模型的整体调查。最终用户应该了解 AI 增强信息对改进决策的益处,以及错误信息导致错误选择的风险。
3. 数据、模型和集成挑战
极端事件分析面临许多与数据和模型特征相关的重大挑战,但也与 AI 在决策流程中的集成有关(参见表 2)。
3.1 数据挑战
一个主要挑战是缺乏具有专家标注的足够数据,这些数据对于训练和评估 AI 模型至关重要。鉴于极端事件的罕见性,在数据预处理步骤中可能会忽略它们,以消除噪声、空白、偏差和不一致 [80, 81]。此外,AI 在整合和提取来自各种数据源和尺度的相关信息方面存在困难,这会使特征提取和选择变得复杂 [52]。未来的 AI 开发需要侧重于推导出有效的特征(或表示),这些特征能够有效地捕获极端事件的独特特征(参见表 2)。
AI 模型越来越多地被用于增强地球系统模型中次网格过程的参数化,弥合传统方法中的差距。然而,一个关键的挑战是它们在扩展时间范围内的数值不稳定性,由于训练数据不足,在模拟极端事件时可能会产生不切实际的场景 [82]。观测数据的质量也对用于数据同化的 AI 方法提出了挑战。最近,结合了领域驱动和数据驱动模型方法的混合 ML 模型有望创建更稳健和可信的 AI 模型 [81, 83]。此外,基于 AI 的方法已经改进了误差表征,增强了不确定性量化 [84]。
生成模型也被用于更有效地采样集成成员,提供对系统状态的更好表示 [85](参见表 2)。
3.2 模型挑战
缺乏对极端事件的明确统计定义以及导致它们发生的机制阻碍了模型开发和采用。对于检测,极端事件通常构成非点状的复杂上下文、组或条件异常,其来源(变化过程、父级、分布)通常未知 [52]。这导致了挑战,例如捕获微妙(新的)模式、设置自适应阈值或跨空间和时间上的远点整合数据(参见表 2)。对于预测和影响评估,AI 模型对初始条件敏感,并且可能无法捕获长期依赖关系 [80]。此外,数据可能无法揭示极端事件的动力学,可能存在对看不见的动力学的变化 [20],并且平稳性通常不成立。使用结合数据、领域知识和模型的混合模型可以使人们洞悉触发极端事件的机制 [81, 83, 86]。
极端事件的复杂性也使得归因、因果发现和可解释性特别具有挑战性。xAI 只能揭示模型学习到的相关性,而没有关于因果结构的信息。这会导致 xAI 加剧模型偏差或虚假相关性。实际上,不同的 xAI 方法可以产生截然不同的解释,其对不同模型的适用性应该进行定量评估 [13]。因果关系并非没有错误,因为关于极端事件来源的错误假设会导致错误的因果图、结论和决策 [58]。最后,UQ 中的挑战包括区分和量化偶然性和认知性不确定性,模型过度参数化及其缺乏稳健的概率基础使这一过程变得复杂(参见表 2)。
3.3 集成挑战
ML 模型通常在高质量、经过精心整理的数据集上进行训练,例如哥白尼 ERA 5 再分析或无云卫星图像,这些图像通常不反映现实世界情况中遇到的容易出错的气象预报和多云条件(表 2)。应用领域适应策略或利用不变特征可以使训练阶段的模型性能与操作条件相一致。此外,利用来自运营利益相关者的专有和可信的地理空间数据,例如详细的森林燃料图和高程模型,可以对这些模型进行微调,以提高检测和预测的准确性,并在输出产品中实现更精细的空间和时间分辨率。
4. 案例研究
我们展示了关于干旱、热浪、野火和洪水的四个案例研究,每个案例都涵盖了检测、预测、影响、可解释性、归因和风险沟通的不同方面(图 3)。
4.1 干旱:检测、预测和可解释性
干旱是最具破坏性的自然灾害之一,对生态环境、农业生产和社会经济条件具有破坏性影响。传统上,人们使用启发式阈值和简单参数模型来处理相关变量(例如,土壤水分、植被指数、降水或温度等)。由于干旱监测历史上纯粹基于站点测量,因此地球观测技术(例如 Sentinel 和 Landsat 系列)和遥感允许在更大空间和时间尺度上估计与干旱相关的变量 [87]。然而,文献中提出的干旱定义(气象学、水文、农业、运营或社会经济)通常是主观的和有限的 [88]。这些类型并非独立的,而是指地球系统干旱所涉及的互补的物理、化学和生物过程。尽管已经提出了经验多元干旱指标来解释这些依赖关系,但干旱过程的复杂性使得它们的检测、预测和特征描述(严重程度、持续时间、开始-结束等)对研究人员和决策者来说是一个负担,这些方法可以从数据驱动的 AI 方法中受益。
传统的 ML 方法已成功应用于干旱预测,从支持向量机、决策树和随机森林到更先进的多元密度估计方法 [26, 89, 90]。然而,DL 算法对于有效地模拟数据中的空间和时间相关性是必需的。为此,神经网络已被用于以监督方式进行干旱监测,主要使用多层、卷积和/或循环神经网络 [2]。由于干旱的时空变异性和气候变化下干旱定义的不断变化,干旱检测是一个无监督问题。因此,无监督和半监督方法推荐用于实际应用 [16]。
为了克服一些先前的挑战,最近的工作已经应用 AI 方法来处理多模态数据(不同分辨率的卫星图像、中尺度气候变量和静态特征)。干旱检测已在欧洲层面使用基于领域知识的变分自动编码器 (VAE) [90] 来解决,这些编码器将传统的干旱指标与气候数据结合起来。使用 AI 预测地球表面的动态可能有助于预测作物产量、森林健康以及干旱事件的影响 [42](图 3a,顶部)。类似的 DL 干旱检测器可以使用 xAI 来解释,识别时间和空间中最显著的区域,并将其主要驱动因素归因 [91](图 3a,底部)。
4.2 热浪:预测、归因和理解
在气候变化的背景下,热浪变得更加频繁和强烈 [92],但区域趋势仍然不确定 [93]。例如,在西欧发现了一个显著的变暖热点,热浪的增加速度快于当前最先进的气候模型的预测 [94]。了解热浪的物理驱动因素对于准确的季节性预测和这些事件的预测至关重要。然而,热浪的几个驱动因素仍然不确定,特别是大气环流的长期变化以及陆气相互作用,这些变化可能会放大或增强特定事件 [92]。
AI 方法可以准确地检测和预测不同空间和时间尺度上的热浪,一些提前期和聚合使用深度学习 [12, 95, 96]、因果信息岭回归 [27] 或混合模型 [97] 等。这些方法通常需要降维工具从高维气候数据中选择预测因子(图 3c)。使用 VAE 从高维数据中提取了表达能力更强的低维特征表示,这可以用于改进热浪的预测 [34]。新的方法,例如 EarthFormer,探索了专门用于预测温度异常的 Transformer 网络,其中编码器/解码器结构与空间注意力层相结合 [98]。除了预测热浪之外,还可以从 ML 模型中推断出热浪的物理驱动因素。例如,xAI 工具可以用于发现热浪的物理驱动因素,例如 [97]。除了 xAI 之外,因果推断方法已被用于了解极端温度的驱动因素 [27]。
归因研究越来越多地使用 AI 技术来研究温度和降水 [50]。在热浪方面,识别环流引起的与热力学变化至关重要。目前正在使用几种统计和 ML 方法来实现这一目标 [99]。归因研究的下一步重要步骤是使用这些 ML 方法来了解动力学变化对观测趋势的贡献。这将减少气候模型观测和再分析中环流趋势之间的差异 [94]。最后,最近的发展表明,ML 技术可以成功地应用于罕见事件的建模、采样和预测 [34]。
4.3 野火:预测、解释和理解
大多数野火造成的损害源于少数极端事件。预测这些事件对于有效的火灾管理和生态系统保护至关重要。预计气候变化将增加极端野火的发生频率、规模和严重程度,加剧火灾天气条件 [100]。传统的灭火方法越来越不足,许多极端火灾一直燃烧到自然熄灭 [101]。不同尺度上火灾驱动因素之间非线性相互作用的复杂性阻碍了火灾行为的可预测性。因此,增强模型以更好地理解和预测导致大规模、不可控制的火灾的条件至关重要。
DL 方法可以将天气预测、卫星观测和燃烧面积数据集联系起来,以模拟野火,实现比传统方法更好的可预测性。DL 已成功用于预测野火危险 [31] 和易感性制图 [102]。在短期内,野火受每日天气变化以及植被和干旱的累积影响驱动。在亚季节到季节尺度上,天气预报不太可靠,野火受地球系统大尺度过程调节,例如遥相关。早期工作表明,DL 模型可以利用来自遥相关的早期工作表明,DL 模型可以利用来自遥相关的 信息来改进长期野火预测 [103]。除了预测野火之外,了解预测背后的原因对于支持决策和火灾管理非常重要。在这种情况下,xAI 可以帮助识别驱动野火的因素,例如支持不同火灾类型的区分和管理,例如风驱火和干旱驱火 [31]。
在全球变暖 [101] 下,在未来几年,我们预计不稳定的大气条件的发生频率会增加,这些条件会导致热对流云 (pyroCbs),即产生自己的天气锋面并可能使野火行为不可预测的暴风雨云 [104]。尽管 pyroCbs 构成了风险,但导致它们发生和演变的条件仍然知之甚少,它们的因果机制也不确定。AI 结合因果推断可以推动 pyroCb 事件的检测、预测和理解 [105]。
4.4 洪水:从检测到风险沟通
研究洪水至关重要,因为它们是最频繁和最具破坏性的自然灾害,每年影响数百万人口,并造成全球每年超过 400 亿美元的损失 [106]。开发用于洪水检测的新方法可以增强 EWS,将死亡人数减少多达 40%,而有效的风险沟通可以确保更好的准备和应对,这可能挽救数千人的生命。
2021 年 7 月,德国、比利时、法国和英国的强降雨引发了严重的暴洪,尤其是在德国的阿赫河地区造成了严重破坏,造成近 200 人死亡 [107, 108]。欧洲洪水预警系统 (EFAS) 发布了警报,并通过国际预警系统进行传播。然而,洪水暴露了这些系统中的重大缺陷(图 3d)。对河流监测基础设施的破坏阻碍了数据的准确性,尽管气象预报在两天前就预测了降雨,但对较小流域的洪水预测缺乏精度,未能考虑泥石流和形态动力学,导致对洪水严重程度的低估。
AI 为增强洪水管理系统提供了有希望的途径。由 AI 提供支持的先进全球气象预报模型可以快速处理大量数据集成,即使在极端天气事件期间也能提供更准确的概率估计。此外,AI 技术,例如 ML 加速的计算流体动力学,可以解决水文形态动力学建模中的计算挑战,从而允许更精确地预测流量和水位,尤其是在未测量的流域 [109]。
此外,AI 可以帮助校准非接触式视频水位计,这些水位计可能比传统方法更稳健,因为它们不受水位直接影响。AI 还可以指导法医分析以评估暴露和脆弱性,使用多模态方法在地方尺度上改进地理空间模型。然而,这些 AI 驱动模型的有效性取决于对当地地形(包括桥梁和水道等潜在瓶颈)的详细了解,以及关于社会对洪水的脆弱性的准确数据。
然而,AI 还可以改变预警的发布方式,以改进沟通和应对策略。例如,基于数字高程模型的 AI 生成的地图和逼真的可视化可以描绘出预期的淹没区域和损害 [110]。此外,AI 可以生成易于理解的语言预警,包括书面和听觉形式,针对不同的群体,包括视力障碍者。基于 LLM 的聊天机器人功能可以增强交互性,提供针对紧急查询的实时、个性化响应(参见图 3d 中的示例)。
5. 结论和展望
本文回顾了 AI 在分析和建模极端事件方面的巨大潜力,同时详细介绍了与该新兴领域相关的主要困难和前景。将 AI 整合到极端事件分析中面临着几个挑战,包括数据管理问题,例如处理动态数据集、偏差和高维性,这些问题会使特征提取变得复杂。AI 模型在对“极端”的明确统计定义方面也存在困难。此外,将 AI 与物理模型集成在一起带来了巨大的挑战,但也为提高模型准确性和可靠性提供了有希望的机会。可信度问题源于 ML 模型的复杂性和可解释性、跨不同上下文泛化的困难以及不确定性的量化。操作挑战包括 AI 输出的复杂性,这阻碍了非专家对其进行解释,由于对可靠性和公平性的担忧而抵制采用 AI,以及需要能够促进将 AI 洞察力透明且合乎道德地整合到决策过程中的框架。
先前的挑战损害了 ML 模型在分析极端事件方面的可重复性和可比性。这些挑战因数据稀缺、模型配置缺乏透明度以及使用专有工具而加剧。此外,跨学科差异阻碍了一致性和可比性。有效的解决方案需要稳健、透明的方法、包容的数据共享实践以及支持跨学科合作的框架。
我们概述了并强调了开发可操作、可解释和值得信赖的 AI 系统的重要性。解决这些挑战需要 AI 研究人员、环境和气候科学家、领域专家以及决策者跨学科的协调努力。这种协作方法对于推进 AI 在极端事件分析中的应用至关重要,并确保这些技术适应现实世界的需求和约束。从操作角度来看,将 AI 解决方案适应实时数据集成、模型部署和资源分配突出了对能够在灾害管理和风险减缓的操作框架内运行的系统的需求。此外,在模型评估和基准测试方面仍然需要方法改进,以缓解过拟合等问题并增强 AI 系统的泛化能力。
展望未来,还有许多领域值得进一步探索和改进。这些包括开发针对极端事件的基准、增强领域知识的整合以改进数据融合和模型训练,以及创建能够适应极端事件动态性质的稳健、可扩展的 AI 系统。最近的 LLM 收集了大量嵌入在文献中的领域知识,有望在风险沟通方面取得重大进展。
随着我们的进步,最终目标是利用 AI 的潜力,为社会带来实质性益处,特别是通过增强我们管理和应对极端事件的能力。通过专门的研究和协作创新,AI 可以成为我们理解和减轻这些具有挑战性和难以捉摸的现象影响的策略的基石。
参考文献:
[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021.
[2] J. P´erez-Aracil, S. Salcedo-Sanz, M. Gonzalez-Calabuig, and G. Camps-Valls, “Machine learning for drought monitoring and prediction: A review,” Journal of Hydrology, vol. 584, pp. 124749, 2020.
[3] M. Reichstein, A. H¨ohl, and K.-H. Cohrs, “Artificial intelligence for weather and climate prediction: A review,” Earth Space Science, vol. 10, no. 1, pp. e2022EA000995, 2023.
[4] A. H¨ohl, M. Reichstein, and K.-H. Cohrs, “Machine learning for Earth system science: A review,” WIREs Climate Change, vol. 10, no. 5, pp. e660, 2019.
[5] M. Giuliani, A. Castelletti, and F. P. L. B. de Sousa, “Extreme hydrological events modeling through machine learning techniques: A review,” Journal of Hydrology, vol. 594, pp. 125939, 2021.
[6] S. Kondylatos, I. Papoutsis, and S. P. K. Papadopoulos, “Artificial Intelligence for Extreme Event Management: A Review of Methods and Applications,” Sustainability, vol. 13, no. 14, p. 7620, 2021.
[7] G. Camps-Valls, “Deep learning for Earth observation: A review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 12, pp. 5580–5605, 2018.
[8] A. C. Wilson, “Uncertainty in deep learning,” arXiv preprint arXiv:1906.02530, 2019.
[9] C. B. Field, V. R. Ramírez-Villegas, T. A. Lobell, D. B. H. M. van den Berg, M. J. Gerber, K. G. Haines, M. J. Hulme, R. J. T. Little, J. A. Matthews, J. S. Pereira, et al., “Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” 2014.