在计算机视觉和图形学领域,三维重建和新视角合成一直是备受关注的研究热点。传统方法如摄影测量和多视角立体视觉在处理复杂场景时往往面临诸多挑战。近年来,基于深度学习的方法,如神经辐射场(NeRF),在这一领域取得了显著进展。然而,这些方法仍存在渲染速度慢、训练时间长等问题。
2023年6月,Kerbl等人[1]提出的高斯溅射(3D Gaussian Splatting)技术为三维重建和新视角合成领域带来了革命性的突破。这种方法通过优化一组三维高斯函数来表示场景,不仅实现了高质量的场景重建和渲染,还大大提高了训练和渲染速度。本文将深入探讨高斯溅射技术的原理、最新进展及其在各个应用领域的潜力。
高斯溅射的基本原理
高斯溅射的核心思想是将三维场景表示为一组三维高斯函数的集合。每个高斯函数都有其特定的参数,包括:
- 三维位置 μ∈ℝ3
- 协方差矩阵 Σ∈ℝ3×3
- 颜色 c∈ℝ3
- 不透明度 o∈ℝ
渲染过程主要包括以下步骤:
- 高斯函数投影:将三维高斯函数投影到二维平面上。
- 深度排序:根据深度信息对投影后的高斯函数进行排序。
- 颜色合成:从前到后合成高斯函数的颜色贡献。
Kerbl等人[1]提出的原始高斯溅射算法采用了一种基于瓦片的溅射解决方案,确保了实时渲染的同时保持了高质量的视觉效果。这种方法不仅在渲染质量上超越了NeRF等先进技术,还实现了显著更快的训练速度和实时渲染能力。
让我们尝试用一个更生动的比喻来解释这个复杂的概念。
想象一下,我们正在创造一个微型宇宙: