“真正的记忆艺术是专注的艺术!”
——塞缪尔·约翰逊,1787
🧠 记忆与学习:从人类大脑到机器模型的启发
在漫长的科学探索中,记忆一直是人类学习和认知的核心。没有记忆,人类和动物将只能依靠简单的反射行为生存。而在机器学习领域,记忆的概念同样占据了重要地位。从早期的霍普菲尔德网络(Hopfield Networks)到长短期记忆网络(LSTMs),再到近年来的变压器(Transformers),研究者们不断试图模拟人脑的记忆系统。然而,这些架构在面对复杂任务时,仍然存在诸多限制:短期记忆的局限性、长序列数据的处理难题,以及对推理和泛化能力的不足。
本文介绍了一种全新的神经记忆模块及其架构——Titans,它试图突破现有模型的限制,结合短期记忆与长期记忆的优势,打造更高效、更强大的深度学习系统。
🔍 现有模型的挑战:短期记忆与长期记忆的权衡
🌟 变压器的辉煌与瓶颈
自 2017 年变压器ÿ