AI 代理正在崛起,在自动化曾经被认为不可能的流程中发挥着至关重要的作用。这些ai agent利用LLMs 来执行各种任务,从产生线索到做出投资决策。但是,构建这些aiagent的框架的选择会显著影响它们的效率和有效性。在这篇博客中,我们将评估用于构建 AI 代理的三个重要框架——LangGraph、Autogen 和 Crew AI。
什么是 AI agent
AI 中的agent是一种应用程序,它使用 LLMs 自主执行特定任务。这些任务的范围从回答研究问题到调用后端服务。agent在需要开放式答案的场景中特别有用,他们可以提供非常有效的解决方案。
客户支持agent能够解决客户查询、提供信息和自主解决问题。而代码生成agent可以生成、调试和运行代码片段,帮助开发人员自动执行重复性任务。
自动化 AI 驱动的开发
何时使用AI Agent
当任务需要复杂的决策、自主性和适应性时,AI Agent非常有益。它们在工作流是动态的并且涉及可从自动化中受益的多个步骤或交互的环境中表现出色。例如,在客户支持方面,AI agent可以处理广泛的查询,提供实时帮助,并在必要时将问题上报给人工操作员。这不仅可以提高效率,还可以通过提供及时准确的响应来增强客户体验。
在研究和数据分析中,AI Agent可以自主收集、处理和分析大量数据,无需人工干预即可提供有价值的见解。它们在需要实时数据处理的场景中也很有用,例如金融交易,AI agent可以根据市场状况做出瞬间决策。
此外,AI Agent在教育应用程序中非常有用,他们可以在其中提供个性化的学习体验、适应学生的进度并提供即时反馈。在软件开发中,代理可以协助代码生成、调试和测试,从而显著缩短开发时间并提高代码质量。AI Agent从互动中学习并随着时间的推移改进的能力使他们在持续改进和适应至关重要的环境中变得非常宝贵。
何时不使用AI Agent
AI Agent提供了许多优势,但在某些情况下,使用它们可能不是正确的选择。
需要明确的是,在任务简单、不频繁或需要最少自动化的情况下,使用AI Agent的复杂性可能不合理。现有软件解决方案可以轻松管理的简单任务不一定会受益于基于AI Agent的系统增加的复杂性。在这种情况下,传统方法更高效、更具成本效益。
此外,需要深厚的特定于领域的知识和专业知识的任务,而这些知识和专业技能无法轻松编码到AI Agent中,可能无法从自动化中受益。例如,复杂的法律分析、复杂的医疗诊断或在不确定的环境中做出高风险决策通常需要经验丰富的专业人士的专业知识和直觉。在这种情况下,仅仅依赖AI agent可能会导致次优甚至有害的结果。
AI Agent也不太适合需要高度人类同理心、创造力或主观判断的任务。例如,在心理治疗、咨询或创意写作等领域,代理人很难复制人类情感和创造力的细微差别。在这些情况下,人际互动是不可替代的,对于实现预期结果至关重要。
构建AI Agent需要在时间、资源和专业知识方面进行大量投资。对于小型企业或预算有限的项目,开发和维护AI Agent的成本可能超过收益。此外,在受到严格监管的行业中,出于合规性和安全性考虑,可能会限制AI Agent的使用。确保AI Agent遵守严格的监管要求可能具有挑战性且需要大量资源。
LangGraph 与 Autogen 与 Crew AI
在阐明了何时使用AI Agent之后,让我们将重点转移到主要主题:业内最广泛采用的框架。我们进行了一项投票,并确定了最常用的三个框架。让我们从这些框架的高级概述开始。