劳保防护用品穿戴检测系统通过Opencv深度学习技术,劳保防护用品穿戴检测系统对现场作业人员行为以及安全作业防护穿戴用品进行全天候检测,当劳保防护用品穿戴检测系统检测到现场施工人员未按照要求进行施工穿戴防护用品,劳保防护用品穿戴检测系统立即对现场违规穿戴人员或者违规行为人员进行抓拍告警并同步提醒后台值班人员进行处理。

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本。YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。

劳保防护用品穿戴检测系统 YOLOv8_人工智能

随着社会的发展和人们生活水平的进步,大家对于化工煤矿工地石化电力场景下人员安全行为作业以及按照规定要求穿戴劳保防护用品越来越重视,因为每个辛勤劳动的人背后都是一个家庭。劳动防护用品是保护现场施工作业人员在现场作业生产过程中的人身安全所必须的一种穿戴装备,但是由于现场作业复杂以及流程繁琐,人员众多等原因,很有可能会出现现场施工作业人员未按照要求穿戴劳保用品,这个时候如果不及时提醒处理,很有可能会发生更大的危险和意外。

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.

劳保防护用品穿戴检测系统利用施工作业现场的监控摄像头,劳保防护用品穿戴检测系统通过自主研发AI视频分析技术,劳保防护用品穿戴检测系统对施工现场的监控视频进行实时分析,发现现场施工人员未没有按照要求佩戴安全帽、反光衣、安全带等违规行为进行预警提醒,有效的协助后台值班人员对现场各处施工作业现场进行管理,能及时消除安全隐患,助力施工安全。