【bert】:在训练bert 语义相似的任务时,last ave state 的计算

该博客讨论了在BERT模型中计算句向量时的一个常见问题。当输入文本长度小于预设的seqlen时,平均语义向量的计算可能会不准确。文中提出了解决方案,通过引入注意力掩码来确保只对实际存在的 tokens 进行平均,从而提高句向量的计算精度。这种方法尤其适用于处理变长输入的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

在bert模型训练以及预测的时候,我们会使用到最后一层隐藏层的平均语义向量作为句向量,发现部分的计算方式如下:

 if self.pooling == 'last-avg':
     last = out.last_hidden_state.transpose(1, 2)  # [batch, 768, seqlen]                                               
     return torch.avg_pool1d(last, kernel_size=last.shape[-1]).squeeze(-1)  # [batch, 768]                         

但是这里有一个问题,我们一般输入的文本是小于或者等于seqlen的,如果等于的话,这样计算没有问题。但是如果是小于的话,这里平均到的应该是按照具体整个batch中的每行的长度来计算的,所以这里的计算方式不是最准确的。

解决

if self.pooling == 'last-avg':
	token_embeddings = out.last_hidden_state
    attention_mask = torch.unsqueeze(attention_mask, dim=-1)
    token_embeddings = token_embeddings * attention_mask
    seqlen = torch.sum(attention_mask, dim=1)
    embeddings = torch.sum(token_embeddings, dim=1) / seqlen
    return embeddings
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值