问题
在bert模型训练以及预测的时候,我们会使用到最后一层隐藏层的平均语义向量作为句向量,发现部分的计算方式如下:
if self.pooling == 'last-avg':
last = out.last_hidden_state.transpose(1, 2) # [batch, 768, seqlen]
return torch.avg_pool1d(last, kernel_size=last.shape[-1]).squeeze(-1) # [batch, 768]
但是这里有一个问题,我们一般输入的文本是小于或者等于seqlen的,如果等于的话,这样计算没有问题。但是如果是小于的话,这里平均到的应该是按照具体整个batch中的每行的长度来计算的,所以这里的计算方式不是最准确的。
解决
if self.pooling == 'last-avg':
token_embeddings = out.last_hidden_state
attention_mask = torch.unsqueeze(attention_mask, dim=-1)
token_embeddings = token_embeddings * attention_mask
seqlen = torch.sum(attention_mask, dim=1)
embeddings = torch.sum(token_embeddings, dim=1) / seqlen
return embeddings