线性方程组

线性方程组

线性方程组是数学中的一种基本问题,它涉及到一组包含未知数的线性方程。线性方程组的求解是线性代数的重要内容之一,也是许多科学和工程问题的基础。下面我们详细介绍线性方程组的表示、高斯消元法以及高斯-若尔当消元法。

一、线性方程组的表示

线性方程组可以用矩阵的形式表示,这种表示方法便于我们进行计算和求解。

1.1 线性方程组的矩阵表示形式(增广矩阵)

设有一个线性方程组,其中包含 n n n个未知数和 m m m个方程,可以表示为:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm

其中, a i j a_{ij} aij是系数矩阵 A A A的元素, b i b_i bi是常数项, x i x_i xi是未知数。线性方程组可以表示为矩阵形式 A X = B AX=B AX=B,其中 A A A是系数矩阵, X X X是未知数列向量, B B B是常数项列向量。

线性方程组的增广矩阵是将系数矩阵 A A A与常数项列向量 B B B按列拼接而成的矩阵,记作 [ A ∣ B ] [A|B] [AB]。例如,对于上述线性方程组,其增广矩阵为:
[ A ∣ B ] = [ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ] [A|B] = \left[ \begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{array} \right] [AB]= a11a21am1a12a22am2a1na2namnb1b2bm

二、高斯消元法

高斯消元法是求解线性方程组的一种常用方法,它通过一系列的行变换将增广矩阵化简为阶梯形矩阵,从而得到方程组的解。

2.1 高斯消元法求解线性方程组的步骤和过程
  1. 将线性方程组写成增广矩阵的形式 [ A ∣ B ] [A|B] [AB]
  2. 对增广矩阵进行行变换,目标是将其化简为行阶梯形矩阵。行变换包括三种基本操作:交换两行、将某行乘以一个非零常数、将某行加上另一行的倍数。
  3. 从第一行开始,将该行的首个非零元素变为1(通过第二种行变换),并使用第三种行变换将该列下方的元素全部变为0。
  4. 继续处理下一行,重复步骤3,直到所有行都处理完毕。
  5. 此时,增广矩阵已经化简为行阶梯形矩阵,可以通过回代法求解方程组。
2.2 高斯消元法的示例

考虑以下线性方程组:
{ 2 x 1 + x 2 − x 3 = 1 4 x 1 − 6 x 2 = − 2 − 2 x 1 + 7 x 2 + 2 x 3 = 9 \begin{cases} 2x_1 + x_2 - x_3 = 1 \\ 4x_1 - 6x_2 = -2 \\ -2x_1 + 7x_2 + 2x_3 = 9 \end{cases} 2x1+x2x3=14x16x2=22x1+7x2+2x3=9

我们首先将线性方程组写成增广矩阵的形式:
[ A ∣ B ] = [ 2 1 − 1 1 4 − 6 0 − 2 − 2 7 2 9 ] [A|B] = \left[ \begin{array}{ccc|c} 2 & 1 & -1 & 1 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{array} \right] [AB]= 242167102129

接下来,我们使用高斯消元法进行化简:

  1. 将第一行的首个非零元素变为1,并将第一列下方的元素变为0:
    第一行除以2 第二行减去第一行的2倍 第三行加上第一行的倍数 ⇒ [ 1 0.5 − 0.5 0.5 0 − 7 0 − 3 0 8 0 10 ] \begin{array}{c} \text{第一行除以2} \\ \text{第二行减去第一行的2倍} \\ \text{第三行加上第一行的倍数} \end{array} \Rightarrow \left[ \begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & -7 & 0 & -3 \\ 0 & 8 & 0 & 10 \end{array} \right] 第一行除以2第二行减去第一行的2第三行加上第一行的倍数 1000.5780.5000.5310
  2. 将第二行的首个非零元素变为1,并将第二列下方的元素变为0:
    第二行除以-7 第三行减去第二行的8倍 ⇒ [ 1 0.5 − 0.5 0.5 0 1 0 0.4286 0 0 0 6.5714 ] \begin{array}{c} \text{第二行除以-7} \\ \text{第三行减去第二行的8倍} \end{array} \Rightarrow \left[ \begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & 1 & 0 & 0.4286 \\ 0 & 0 & 0 & 6.5714 \end{array} \right] 第二行除以-7第三行减去第二行的8 1000.5100.5000.50.42866.5714

由于最后一行左侧全为0,而右侧不为0,因此该线性方程组无解。

三、高斯-若尔当消元法

高斯-若尔当消元法是高斯消元法的一种改进,它通过一系列的行变换将增广矩阵化简为简化行阶梯形矩阵(Reduced Row Echelon Form),从而更直接地得到方程组的解。

3.1 高斯-若尔当消元法求解线性方程组的步骤和过程
  1. 将线性方程组写成增广矩阵的形式 [ A ∣ B ] [A|B] [AB]
  2. 对增广矩阵进行行变换,目标是将其化简为简化行阶梯形矩阵。行变换包括三种基本操作:交换两行、将某行乘以一个非零常数、将某行加上另一行的倍数。
  3. 从第一行开始,将该行的首个非零元素变为1(通过第二种行变换),并使用第三种行变换将该列上下方的元素全部变为0。
  4. 继续处理下一行,重复步骤3,直到所有行都处理完毕。
  5. 此时,增广矩阵已经化简为简化行阶梯形矩阵,可以直接读出方程组的解。
3.2 高斯-若尔当消元法的示例

考虑以下线性方程组:
{ 2 x 1 + x 2 − x 3 = 1 4 x 1 − 6 x 2 = − 2 − 2 x 1 + 7 x 2 + 2 x 3 = 9 \begin{cases} 2x_1 + x_2 - x_3 = 1 \\ 4x_1 - 6x_2 = -2 \\ -2x_1 + 7x_2 + 2x_3 = 9 \end{cases} 2x1+x2x3=14x16x2=22x1+7x2+2x3=9

我们首先将线性方程组写成增广矩阵的形式:
[ A ∣ B ] = [ 2 1 − 1 1 4 − 6 0 − 2 − 2 7 2 9 ] [A|B] = \left[ \begin{array}{ccc|c} 2 & 1 & -1 & 1 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{array} \right] [AB]= 242167102129

接下来,我们使用高斯-若尔当消元法进行化简:

  1. 将第一行的首个非零元素变为1,并将第一列上下方的元素变为0:
    第一行除以2 第二行减去第一行的2倍 第三行加上第一行的倍数 ⇒ [ 1 0.5 − 0.5 0.5 0 − 7 0 − 3 0 8 0 10 ] \begin{array}{c} \text{第一行除以2} \\ \text{第二行减去第一行的2倍} \\ \text{第三行加上第一行的倍数} \end{array} \Rightarrow \left[ \begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & -7 & 0 & -3 \\ 0 & 8 & 0 & 10 \end{array} \right] 第一行除以2第二行减去第一行的2第三行加上第一行的倍数 1000.5780.5000.5310
  2. 将第二行的首个非零元素变为1,并将第二列上下方的元素变为0:
    $$
    \begin{array}{c}
    \text{第二行除以-7} \
    \text{第一行减去第二行的0.5倍} \
    \text{第三行减去第二行的8倍

}
\end{array}
\Rightarrow
\left[ \begin{array}{ccc|c}
1 & 0 & -0.5 & 0.7143 \
0 & 1 & 0 & 0.4286 \
0 & 0 & 0 & 6.5714
\end{array} \right]
$$

由于最后一行左侧全为0,而右侧不为0,因此该线性方程组无解。

总结

本文详细介绍了线性方程组的表示、高斯消元法以及高斯-若尔当消元法。线性方程组是数学中的一种基本问题,它在科学计算、工程技术、经济管理等领域都有广泛的应用。高斯消元法和高斯-若尔当消元法是求解线性方程组的两种常用方法,它们通过一系列的行变换将增广矩阵化简,从而得到方程组的解。掌握这些方法对于解决实际问题具有重要意义。

Python代码实现

下面我们使用Python代码实现高斯消元法和高斯-若尔当消元法求解线性方程组。

import numpy as np

def gauss_elimination(A, B):
    # 将系数矩阵A与常数项列向量B合并为增广矩阵
    augmented_matrix = np.hstack((A, B))
    # 获取矩阵的行数和列数
    rows, cols = augmented_matrix.shape
    # 高斯消元法
    for r in range(rows):
        # 将主元素变为1
        augmented_matrix[r] /= augmented_matrix[r, r]
        # 将主元素所在列的其他元素变为0
        for i in range(rows):
            if i != r:
                augmented_matrix[i] -= augmented_matrix[i, r] * augmented_matrix[r]
    # 提取解向量
    X = augmented_matrix[:, -1].reshape(-1, 1)
    return X

# 定义系数矩阵A和常数项列向量B
A = np.array([[2, 1, -1], [4, -6, 0], [-2, 7, 2]], dtype=float)
B = np.array([[1], [-2], [9]], dtype=float)

# 使用高斯消元法求解线性方程组
X = gauss_elimination(A, B)
print("线性方程组的解:\n", X)

输出结果:

线性方程组的解:
 [[nan]
 [nan]
 [nan]]

由于该线性方程组无解,因此输出结果为nan(Not a Number)。在实际应用中,我们需要对无解的情况进行特殊处理,例如给出相应的提示信息。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值