模型训练和动态参数调整 ---- 学习率调整,模型保存

本文探讨了PyTorch中模型训练的学习率设置,详细解释了如何在训练过程中进行动态调整。同时,介绍了模型保存的方法,指出state_dict保存了模型的权重和偏置信息,以及只有可训练层会被保存。优化器的state_dict则包含超参数如学习率、动量等。
摘要由CSDN通过智能技术生成

1.学习率

optimizer = init_optimizer(model.parameters(), **optimizer_kwargs(args))
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=4)

初始化部分如上:https://blog.csdn.net/weixin_40100431/article/details/84311430 具体参数设置
训练时候如下:

scheduler.step(train_loss)

2.模型保存

pytorch 中的 state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系.(如model的每一层的weights及偏置等等)

(注意,只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等)

优化器对象Optimizer也有一个state_dict,它包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等)

模型保存有两种:

第一种:

        if use_gpu:
            state_dict = model.state_dict()
        else:
            state_dict = model.state_dict()

        save_checkpoint({
            'state_dict': state_dict,
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值