1.前言
Overfitting 也被称为过度学习,过度拟合。我们总是希望在机器学习训练时,机器学习模型能在新样本上很好的表现。过拟合时,通常是因为模型过于复杂,学习器把训练样本学得“太好了”,很可能把一些训练样本自身的特性当成了所有潜在样本的共性了,这样一来模型的泛化性能就下降了。我们形象的打个比方吧,你考试复习,复习题都搞懂了,但是一到考试就不会了,那是过拟合。
2.对比drop前后的loss
2.1.导入必要模块
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer #处理标签为二进制
2.2.加载数据
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y) #转化标签为二进制形式
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
2.3.定义添加层函数
def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) #系数
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) #偏置
Wx_plus_b = tf.matmul(inputs, Weights) + biases
# here to dropout
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
2.4.损失函数与优化器
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 64]) # 8x8
ys = tf.placeholder(tf.float32, [None, 10])
这里的keep_prob是保留概率,即我们要保留的结果所占比例,它作为一个placeholder,在run时传入, 当keep_prob=1的时候,相当于100%保留,也就是dropout没有起作用。
添加隐含层和输出层:
l1 = add_layer(xs, 64, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function=tf.nn.softmax)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # 交叉熵函数损失函数
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) #优化函数
sess = tf.Session()
merged = tf.summary.merge_all()
# summary writer goes in here
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)
2.5.训练
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(500):
# here to determine the keeping probability
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5})
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i)