Tensorflow——Dropout(解决过拟合问题)

1.前言

Overfitting 也被称为过度学习,过度拟合。我们总是希望在机器学习训练时,机器学习模型能在新样本上很好的表现。过拟合时,通常是因为模型过于复杂,学习器把训练样本学得“太好了”,很可能把一些训练样本自身的特性当成了所有潜在样本的共性了,这样一来模型的泛化性能就下降了。我们形象的打个比方吧,你考试复习,复习题都搞懂了,但是一到考试就不会了,那是过拟合。

2.对比drop前后的loss

2.1.导入必要模块

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer  #处理标签为二进制

2.2.加载数据

digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)   #转化标签为二进制形式
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)

2.3.定义添加层函数

def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))   #系数
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) #偏置
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    # here to dropout
    Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b, )
    tf.summary.histogram(layer_name + '/outputs', outputs)
    return outputs

2.4.损失函数与优化器

keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 64])  # 8x8
ys = tf.placeholder(tf.float32, [None, 10])

这里的keep_prob是保留概率,即我们要保留的结果所占比例,它作为一个placeholder,在run时传入, 当keep_prob=1的时候,相当于100%保留,也就是dropout没有起作用。

添加隐含层和输出层:

l1 = add_layer(xs, 64, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function=tf.nn.softmax)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))  # 交叉熵函数损失函数
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) #优化函数

sess = tf.Session()
merged = tf.summary.merge_all()
# summary writer goes in here
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)

2.5.训练

if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
    init = tf.initialize_all_variables()
else:
    init = tf.global_variables_initializer()
sess.run(init)
for i in range(500):
    # here to determine the keeping probability
    sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5})
    if i % 50 == 0:
        # record loss
        train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
        test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
        train_writer.add_summary(train_result, i)
        test_writer.add_summary(test_result, i)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值