捷联惯导系统学习4.3(静基座误差)

捷联惯导的动态误差传播本身是一个复杂的时变系统,与特定航行轨迹密切相关,很难去求解。
但在静基座条件下,误差传播退化成一个线性定常系统,通过获得其解析,解获得惯导误差传播特性。

静基座误差方程

静基座条件: v n = 0 ; p = [ L λ h ] T ( 固 定 已 知 ) ; ( r o l l , y a w , p i t c h , 不 变 ) v^n=0;p=\left[\begin{matrix} L&\lambda&h\end{matrix}\right]^T(固定已知);(roll,yaw,pitch,不变) vn=0;p=[Lλh]T();(roll,yaw,pitch,)
已知:加速度计测得比力 f s f n = [ 0 0 g ] T f_{sf}^n=\left[\begin{matrix} 0&0&g\end{matrix}\right]^T fsfn=[00g]T R M h = R N h = R R_{Mh}=R_{Nh}=R RMh=RNh=R
可以简化并解耦为高度通道和水平通道,如下
{ δ v ˙ U = 2 w n δ v E − g 0 s i n 2 L ( β − 4 β 1 c o s 2 L ) δ L + β 2 δ h + ▽ U 北 向 速 度 误 差 分 量 δ h ˙ = δ v U 高 度 误 差 ϕ ˙ E = w U ϕ N + w N ϕ U − δ v N / R − ξ E 东 向 姿 态 误 差 ϕ ˙ N = − w U ϕ E + δ v E / R − w U δ L − ξ N 北 向 姿 态 误 差 ϕ ˙ U = w N ϕ E + δ v E t a n L / R + w N δ L − ξ U 天 向 姿 态 误 差 δ v ˙ E = − g ϕ N + 2 w U δ v N + ▽ E 东 向 速 度 误 差 δ v ˙ N = g ϕ E − 2 w U δ v E + ▽ N 北 向 速 度 误 差 δ L ˙ = δ v N / R 纬 度 误 差 分 量 δ λ ˙ = δ v E s e c L / R 经 度 误 差 分 量 \begin{cases} \delta \dot v_U=2w_n\delta v_E-g_0sin2L(\beta-4\beta_1cos2L)\delta L+\beta_2\delta h+\bigtriangledown_U&北向速度误差分量 \\ \delta \dot h=\delta v_U&高度误差\\ \dot \phi_E=w_U\phi_N+w_N\phi_U-\delta v_N/R-\xi_E&东向姿态误差 \\ \dot \phi_N=-w_U\phi_E+\delta v_E/R-w_U\delta L-\xi_N&北向姿态误差\\ \dot \phi_U=w_N\phi_E+\delta v_E tanL/R+w_N\delta L-\xi_U&天向姿态误差\\ \delta \dot v_E=-g\phi_N+2w_U\delta v_N+\bigtriangledown_E&东向速度误差\\ \delta \dot v_N=g\phi_E-2w_U\delta v_E+\bigtriangledown_N&北向速度误差\\ \delta \dot L=\delta v_N/R&纬度误差分量\\ \delta \dot \lambda=\delta v_E secL/R&经度误差分量 \end{cases} δv˙U=2wnδvEg0sin2L(β4β1cos2L)δL+β2δh+Uδh˙=δvUϕ˙E=wUϕN+wNϕUδvN/RξEϕ˙N=wUϕE+δvE/RwUδLξNϕ˙U=wNϕE+δvEtanL/R+wNδLξUδv˙E=gϕN+2wUδvN+Eδv˙N=gϕE2wUδvE+NδL˙=δvN/Rδλ˙=δvEsecL/R姿姿姿

高度通道

再高度通道,水平速度不大( v E ≈ v N ≈ 0 v_E\approx v_N\approx0 vEvN0),且平稳运动( f E ≈ f N ≈ 0 f_E \approx f_N\approx0 fEfN0)
{ δ v ˙ U = 2 w n δ v E − g 0 s i n 2 L ( β − 4 β 1 c o s 2 L ) δ L + β 2 δ h + ▽ U 北 向 速 度 误 差 分 量 δ h ˙ = δ v U 高 度 误 差 \begin{cases} \delta \dot v_U=2w_n\delta v_E-g_0sin2L(\beta-4\beta_1cos2L)\delta L+\beta_2\delta h+\bigtriangledown_U&北向速度误差分量 \\ \delta \dot h=\delta v_U&高度误差\\ \end{cases} {δv˙U=2wnδvEg0sin2L(β4β1cos2L)δL+β2δh+Uδh˙=δvU
等效天向加速度计零偏为: ▽ U ′ = 2 w n δ v E − g 0 s i n 2 L ( β − 4 β 1 c o s 2 L ) δ L + ▽ U \bigtriangledown_U'=2w_n\delta v_E-g_0sin2L(\beta-4\beta_1cos2L)\delta L+\bigtriangledown_U U=2wnδvEg0sin2L(β4β1cos2L)δL+U
在这里插入图片描述
▽ U ′ \bigtriangledown_U' U:在时域中为常值
δ h ( s ) = 1 s 2 − β 2 ∗ ▽ U ′ s = ▽ U ′ 2 β 2 ( 1 s + β 2 + 1 s − β 2 − 2 s ) \delta h(s)=\frac{1}{s^2-\beta_2}*\frac{\bigtriangledown_U'}{s}=\frac{\bigtriangledown_U'}{2\beta_2}(\frac{1}{s+\sqrt{\beta_2}}+\frac{1}{s-\sqrt{\beta_2}}-\frac{2}{s}) δh(s)=s2β21sU=2β2U(s+β2 1+sβ2 1s2)
进行拉普拉时变换得到频域模型:
δ h ( t ) = ▽ U ′ β 2 ( ( β 2 t ) 2 2 ! + ( β 2 t ) 4 4 ! + ( β 2 t ) 6 6 ! ) + . . . ( β 2 = 3.08 × 1 0 − 6 ) s − 2 \delta h(t)=\frac{\bigtriangledown_U'}{\beta_2}(\frac{(\sqrt{\beta_2}t)^2}{2!}+\frac{(\sqrt{\beta_2}t)^4}{4!}+\frac{(\sqrt{\beta_2}t)^6}{6!})+...(\beta_2=3.08×10^{-6})s^{-2} δh(t)=β2U(2!(β2 t)2+4!(β2 t)4+6!(β2 t)6)+...(β2=3.08×106)s2
由频域模型可知: β 2 t > 1 , 即 t > 1 β 2 ≈ 1755 s \sqrt{\beta_2t}>1,即t>\frac{1}{\sqrt{\beta_2}}\approx1755s β2t >1,t>β2 11755s 以后2次项将会对结果产生显著明显,产生发散。
纯惯导系统高度通道不能长时间使用单独使用,往往需要高度计进行高度阻尼。
可以在短时间内(半小时内),或者固定高度的场景,此时忽略2此方以上影响使用,即高度误差为$ δ h ( t ) ≈ ▽ U ′ t 2 2 ( 物 理 意 义 上 为 等 效 天 向 零 偏 的 2 次 积 分 ) \delta h(t)\approx \frac{\bigtriangledown_U' t^2}{2}(物理意义上为等效天向零偏的2次积分) δh(t)2Ut22

水平通道

{ ϕ ˙ E = w U ϕ N + w N ϕ U − δ v N / R − ξ E 东 向 姿 态 误 差 ϕ ˙ N = − w U ϕ E + δ v E / R − w U δ L − ξ N 北 向 姿 态 误 差 ϕ ˙ U = w N ϕ E + δ v E t a n L / R + w N δ L − ξ U 天 向 姿 态 误 差 δ v ˙ E = − g ϕ N + 2 w U δ v N + ▽ E 东 向 速 度 误 差 δ v ˙ N = g ϕ E − 2 w U δ v E + ▽ N 北 向 速 度 误 差 δ L ˙ = δ v N / R 纬 度 误 差 分 量 δ λ ˙ = δ v E s e c L / R 经 度 误 差 分 量 \begin{cases} \dot \phi_E=w_U\phi_N+w_N\phi_U-\delta v_N/R-\xi_E&东向姿态误差 \\ \dot \phi_N=-w_U\phi_E+\delta v_E/R-w_U\delta L-\xi_N&北向姿态误差\\ \dot \phi_U=w_N\phi_E+\delta v_E tanL/R+w_N\delta L-\xi_U&天向姿态误差\\ \delta \dot v_E=-g\phi_N+2w_U\delta v_N+\bigtriangledown_E&东向速度误差\\ \delta \dot v_N=g\phi_E-2w_U\delta v_E+\bigtriangledown_N&北向速度误差\\ \delta \dot L=\delta v_N/R&纬度误差分量\\ \delta \dot \lambda=\delta v_E secL/R&经度误差分量 \end{cases} ϕ˙E=wUϕN+wNϕUδvN/RξEϕ˙N=wUϕE+δvE/RwUδLξNϕ˙U=wNϕE+δvEtanL/R+wNδLξUδv˙E=gϕN+2wUδvN+Eδv˙N=gϕE2wUδvE+NδL˙=δvN/Rδλ˙=δvEsecL/R姿姿姿
将上述公式转化为矩阵:
X = [ ϕ ˙ E ϕ ˙ N ϕ ˙ U δ v ˙ E δ v ˙ N δ L ˙ ] T X=\left[\begin{matrix} \dot \phi_E&\dot \phi_N&\dot \phi_U&\delta \dot v_E&\delta \dot v_N&\delta \dot L \end{matrix}\right]^T X=[ϕ˙Eϕ˙Nϕ˙Uδv˙Eδv˙NδL˙]T
U = [ − ξ E − ξ N − ξ U ▽ E ▽ N 0 ] T U=\left[\begin{matrix}-\xi_E&-\xi_N&-\xi_U&\bigtriangledown_E&\bigtriangledown_N&0 \end{matrix}\right]^T U=[ξEξNξUEN0]T
F = [ 0 w U w N 0 − 1 / R 0 − w U 0 0 1 / R 0 − w U w N 0 0 t a n L / R 0 w N 0 0 g 0 0 2 w U 0 g 0 0 − 2 w U 0 0 0 0 0 0 1 / R 0 ] F=\left[\begin{matrix}0&w_U&w_N&0&-1/R&0\\ -w_U&0&0&1/R&0&-w_U\\ w_N&0&0&tanL/R&0&w_N\\ 0&0g&0&0&2w_U&0\\ g&0&0&-2w_U&0&0\\ 0&0&0&0&1/R&0 \end{matrix}\right] F=0wUwN0g0wU000g00wN0000001/RtanL/R02wU01/R002wU01/R0wUwN000

得到: { X ˙ = F X + U 公 式 一 δ λ ˙ = δ v E s e c L / R 公 式 二 \begin{cases} \dot X=FX+U&公式一\\ \delta \dot \lambda=\delta v_E secL/R&公式二\\ \end{cases} {X˙=FX+Uδλ˙=δvEsecL/R
假设公式一、公式二均为定常系统,进行拉式变换,可以得到:
{ X ( s ) = ( s I − F ) − 1 [ X ( 0 ) + U ( s ) ] 公 式 一 δ λ ( s ) = 1 s [ ( δ v E ( s ) s e c L ) / R + δ λ ( 0 ) ] 公 式 二 \begin{cases}X(s)=(sI-F)^{-1}[X(0)+U(s)]&公式一\\ \delta \lambda(s)=\frac{1}{s}[(\delta v_E(s) secL)/R+\delta\lambda(0)]&公式二\\ \end{cases} {X(s)=(sIF)1[X(0)+U(s)]δλ(s)=s1[(δvE(s)secL)/R+δλ(0)]
公式一通过其伴随矩阵,求解可以得到:
Δ ( s ) = ∣ s I − F ∣ = ( s 2 + w i e 2 ) [ ( s 2 + w s 2 ) 2 + 4 s 2 w f 2 ] \Delta (s)=|sI-F|=(s^2+w_{ie}^2)[(s^2+w^2_s)^2+4s^2w_f^2] Δ(s)=sIF=(s2+wie2)[(s2+ws2)2+4s2wf2]
w s = g / R ≈ 84.4 m i n ( g = 9.8 m / s 2 , R = 6371 k m ) w_s=\sqrt{g/R}\approx 84.4 min(g=9.8m/s^2,R=6371km) ws=g/R 84.4min(g=9.8m/s2,R=6371km):休拉(Schuler)角频率
w f = w i e s i n L : w_f=w_{ie}sinL: wf=wiesinL:傅科(Foucault)角频率
运行在3-4小时的惯导系统无需考虑傅科周期影响

其他略:详见《捷联惯导算法与组合导航原理》98页

失准角误差通道

δ v E = δ v N = 0 , δ L = 0 \delta v_E=\delta v_N=0,\delta L=0 δvE=δvN=0,δL=0

{ ϕ ˙ E = w U ϕ N + w N ϕ U − ξ E 东 向 姿 态 误 差 ϕ ˙ N = − w U ϕ E − ξ N 北 向 姿 态 误 差 ϕ ˙ U = w N ϕ E − ξ U 天 向 姿 态 误 差 \begin{cases} \dot \phi_E=w_U\phi_N+w_N\phi_U-\xi_E&东向姿态误差 \\ \dot \phi_N=-w_U\phi_E-\xi_N&北向姿态误差\\ \dot \phi_U=w_N\phi_E-\xi_U&天向姿态误差\\ \end{cases} ϕ˙E=wUϕN+wNϕUξEϕ˙N=wUϕEξNϕ˙U=wNϕEξU姿姿姿
可以得到误差方程:
Δ = ∣ s I − [ 0 w U − w N − w U 0 0 w N 0 0 ] ∣ = s ( s 2 + w i e 2 ) \Delta=|sI-\left[\begin{matrix} 0&w_U&-w_N\\ -w_U&0&0\\ w_N&0&0\\ \end{matrix}\right]|=s(s^2+w_{ie}^2) Δ=sI0wUwNwU00wN00=s(s2+wie2)
失准角的震荡频率为地球自转频率,周期为24h

水平北向/水平东向通道

令: ϕ E = ϕ U = 0 , δ v N = 0 , δ L = 0 \phi_E=\phi_U=0,\delta v_N=0,\delta L=0 ϕE=ϕU=0,δvN=0,δL=0
{ ϕ ˙ N = δ v E / R − ξ N ϕ ˙ E = − δ v N / R − ξ E δ λ ˙ = δ v E s e c L / R δ v ˙ E = − g ϕ N + ▽ E δ v ˙ N = g ϕ E + ▽ N δ L ˙ = δ v N / R \begin{cases} \dot \phi_N=\delta v_E/R-\xi_N \\ \dot \phi_E=-\delta v_N/R-\xi_ E\\ \delta \dot \lambda=\delta v_E secL/R\\ \delta \dot v_E=-g\phi_N+\bigtriangledown_E\\ \delta \dot v_N=g\phi_E+\bigtriangledown_N\\ \delta \dot L=\delta v_N/R\\ \end{cases} ϕ˙N=δvE/RξNϕ˙E=δvN/RξEδλ˙=δvEsecL/Rδv˙E=gϕN+Eδv˙N=gϕE+NδL˙=δvN/R
得到水平东向与与天向双通道的特征根均为:
Δ = s 2 + g / R = s 2 + w s 2 = 0 \Delta=s^2+g/R=s^2+w_s^2=0 Δ=s2+g/R=s2+ws2=0
即水平通道的无阻尼震荡周期均为休拉频率 w s = g / R w_s=\sqrt{g/R} ws=g/R
约束条件物理意义上表示:在东向和天向通道上无运动。
在惯导低速、短时、小加速度条件下休拉震荡明显。

水平北向与水平东向双通道

令: ϕ U = 0 \phi_U=0 ϕU=0
{ ϕ ˙ E = w U ϕ N + w N ϕ U − δ v N / R − ξ E 东 向 姿 态 误 差 ϕ ˙ N = − w U ϕ E + δ v E / R − w U δ L − ξ N 北 向 姿 态 误 差 δ v ˙ E = − g ϕ N + 2 w U δ v N + ▽ E 东 向 速 度 误 差 δ v ˙ N = g ϕ E − 2 w U δ v E + ▽ N 北 向 速 度 误 差 δ L ˙ = δ v N / R 纬 度 误 差 分 量 δ λ ˙ = δ v E s e c L / R 经 度 误 差 分 量 \begin{cases} \dot \phi_E=w_U\phi_N+w_N\phi_U-\delta v_N/R-\xi_E&东向姿态误差 \\ \dot \phi_N=-w_U\phi_E+\delta v_E/R-w_U\delta L-\xi_N&北向姿态误差\\ \delta \dot v_E=-g\phi_N+2w_U\delta v_N+\bigtriangledown_E&东向速度误差\\ \delta \dot v_N=g\phi_E-2w_U\delta v_E+\bigtriangledown_N&北向速度误差\\ \delta \dot L=\delta v_N/R&纬度误差分量\\ \delta \dot \lambda=\delta v_E secL/R&经度误差分量 \end{cases} ϕ˙E=wUϕN+wNϕUδvN/RξEϕ˙N=wUϕE+δvE/RwUδLξNδv˙E=gϕN+2wUδvN+Eδv˙N=gϕE2wUδvE+NδL˙=δvN/Rδλ˙=δvEsecL/R姿姿
特征方程为:
Δ = s [ s 2 + ( w s + 6 2 w U ) 2 ] [ s 2 − ( w s − 6 2 w U ) 2 ] \Delta=s[s^2+(w_s+\frac{\sqrt{6}}{2}w_U)^2][s^2-(w_s-\frac{\sqrt{6}}{2}w_U)^2] Δ=s[s2+(ws+26 wU)2][s2(ws26 wU)2]
无阻尼震荡周期均为休拉频率 w s = g / R w_s=\sqrt{g/R} ws=g/R 6 2 w U \frac{\sqrt{6}}{2}w_U 26 wU

水平北向及方位双通道

ϕ N = 0 , δ v E = 0 \phi_N=0,\delta v_E=0 ϕN=0,δvE=0
可以得到:
{ ϕ ˙ E = w N ϕ U − δ v N / R − ξ E 东 向 姿 态 误 差 ϕ ˙ U = w N ϕ E + w N δ L − ξ U 天 向 姿 态 误 差 δ v ˙ N = g ϕ E + ▽ N 北 向 速 度 误 差 δ L ˙ = δ v N / R 纬 度 误 差 分 量 \begin{cases} \dot \phi_E=w_N\phi_U-\delta v_N/R-\xi_E&东向姿态误差 \\ \dot \phi_U=w_N\phi_E+w_N\delta L-\xi_U&天向姿态误差\\ \delta \dot v_N=g\phi_E+\bigtriangledown_N&北向速度误差\\ \delta \dot L=\delta v_N/R&纬度误差分量\\ \end{cases} ϕ˙E=wNϕUδvN/RξEϕ˙U=wNϕE+wNδLξUδv˙N=gϕE+NδL˙=δvN/R姿姿
可以得到特征根为:
Δ = s 2 + ( w N 2 + g / R ) s 2 + w N 2 g / R = ( s 2 + w s 2 ) ( s 2 + w N 2 ) = 0 \Delta=s^2+(w_N^2+g/R)s^2+w_N^2g/R=(s^2+w_s^2)(s^2+w_N^2)=0 Δ=s2+(wN2+g/R)s2+wN2g/R=(s2+ws2)(s2+wN2)=0
罗经效应:当存在方位误差 ϕ U \phi_U ϕU,通过地球自转的北分量 w N w_N wN耦合引起东向失准角 ϕ E \phi_E ϕE,失准角 ϕ E \phi_E ϕE在耦合重力引起北向速度误差, δ v N \delta v_N δvN.
δ v N ( s ) = − g w n s ( s 2 + w 2 ) ( s 2 + w 2 ) ϕ U 0 \delta v_N(s)=\frac{-gw_ns}{(s^2+w^2)(s^2+w^2)}\phi_{U0} δvN(s)=(s2+w2)(s2+w2)gwnsϕU0
δ v N ( t ) = − ϕ U 0 g w N c o s w N t − c o s w s t ( w s + w N ) ( w s − w N ) \delta v_N(t)=-\phi_{U0}g_{w_N}\frac{cosw_Nt-cosw_st}{(w_s+w_N)(w_s-w_N)} δvN(t)=ϕU0gwN(ws+wN)(wswN)coswNtcoswst

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基座下基于导航坐标系的捷联惯性系统解析式包括三个方程,分别是位置、速度和姿态的解析式。 位置解析式:根据惯性力学原理,可以推导出位置的解析式为 $$ \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} \Delta x_{0} \\ \Delta y_{0} \\ \Delta z_{0} \end{bmatrix} + \begin{bmatrix} v_{x0} \cdot t + \frac{1}{2} a_{x0} \cdot t^{2} \\ v_{y0} \cdot t + \frac{1}{2} a_{y0} \cdot t^{2} \\ v_{z0} \cdot t + \frac{1}{2} a_{z0} \cdot t^{2} \end{bmatrix} $$ 其中,$\Delta x$、$\Delta y$、$\Delta z$为惯性系下的位置,$\Delta x_{0}$、$\Delta y_{0}$、$\Delta z_{0}$为初始位置;$v_{x0}$、$v_{y0}$、$v_{z0}$为初始速度;$a_{x0}$、$a_{y0}$、$a_{z0}$为初始加速度;$t$为时间。 速度解析式:根据惯性力学原理,可以推导出速度的解析式为 $$ \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \begin{bmatrix} v_{x0} \\ v_{y0} \\ v_{z0} \end{bmatrix} + \begin{bmatrix} a_{x0} \cdot t \\ a_{y0} \cdot t \\ a_{z0} \cdot t \end{bmatrix} $$ 其中,$v_{x}$、$v_{y}$、$v_{z}$为惯性系下的速度,$v_{x0}$、$v_{y0}$、$v_{z0}$为初始速度;$a_{x0}$、$a_{y0}$、$a_{z0}$为初始加速度;$t$为时间。 姿态解析式:根据刚体力学原理,可以推导出姿态的解析式为 $$ \begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} \phi_{0} + (p\cdot\sin\theta_{0} + q\cdot\cos\theta_{0})\cdot t \\ \theta_{0} + (q\cdot\sin\phi_{0} - r\cdot\cos\phi_{0})\cdot t \\ \psi_{0} + (p\cdot\cos\theta_{0}\cdot\cos\psi_{0} + q\cdot\cos\theta_{0}\cdot\sin\psi_{0} + r\cdot\sin\theta_{0})\cdot t \end{bmatrix} $$ 其中,$\phi$、$\theta$、$\psi$为姿态角,分别表示绕$x$、$y$、$z$轴的旋转角度;$\phi_{0}$、$\theta_{0}$、$\psi_{0}$为初始姿态角;$p$、$q$、$r$为身体坐标系下的角速度,分别表示绕$x$、$y$、$z$轴的角速度;$t$为时间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值