为什么构造costVolume中常用逆深度采样

原因:在现实世界中,深度值分布并不均匀。距离相机较远的物体,其深度值变化较慢,而距离较近的物体,深度值变化较快。均匀采样可能会导致成本体积中远处的深度级别具有更多的噪声和不确定性,而近处的深度级别则可能缺乏细节。而通过在逆深度域中均匀采样,我们可以确保在近距离深度变化较大的地方分配更多的采样点,而在远距离深度变化较小的地方分配较少的采样点,从而避免上述问题。

利用代码直观理解:为了更好地理解逆深度和非逆深度采样的区别,我们可以使用 matplotlib 库绘制对比图。以下是一个示例代码,展示了在一定深度范围内,逆深度采样和非逆深度采样的采样点分布。

import numpy as np
import matplotlib.pyplot as plt

# 定义深度范围
near_depth = 1.0
far_depth = 10.0
num_samples = 100

# 非逆深度采样
linear_depths = np.linspace(near_depth, far_depth, num_samples)

# 逆深度采样
inv_near_depth = 1.0 / near_depth
inv_far_depth = 1.0 / far_depth
linear_inv_depths = np.linspace(inv_near_depth, inv_far_depth, num_samples)
inverse_depths = 1.0 / linear_inv_depths

# 绘图
plt.figure(figsize=(12, 6))

# 非逆深度采样图
plt.subplot(1, 2, 1)
plt.plot(linear_depths, np.ones_like(linear_depths), 'o')
plt.title('Linear Depth Sampling')
plt.xlabel('Depth')
plt.ylabel('Sampling Points')
plt.ylim(0.5, 1.5)

# 逆深度采样图
plt.subplot(1, 2, 2)
plt.plot(inverse_depths, np.ones_like(inverse_depths), 'o')
plt.title('Inverse Depth Sampling')
plt.xlabel('Depth')
plt.ylabel('Sampling Points')
plt.ylim(0.5, 1.5)

plt.tight_layout()
plt.show()

代码运行结果:

左图(Linear Depth Sampling):展示了在深度范围内均匀分布的采样点。可以看到,采样点在整个深度范围内是均匀分布的。
右图(Inverse Depth Sampling):展示了在逆深度范围内均匀分布的采样点。注意到,这些采样点在近距离(小深度值)处更密集,在远距离(大深度值)处更稀疏。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值