【强化学习】中Q-learning,DQN等off-policy算法不需要重要性采样的原因

Q-learning作为off-policy算法,其1-step更新方式使得即便使用非贪婪策略选择动作A,对Q(S,A)的更新也不受影响。而在n-step更新中,由于后续动作at+1可能由非目标策略产生,需要重要性采样修正。DQN通过经验回放进行均匀采样,避免了重要性采样的需求。" 122042452,9669988,BERT模型的嵌入层解析,"['自然语言处理', '深度学习', 'BERT模型', 'transformer', '嵌入层']
摘要由CSDN通过智能技术生成

由于Q-learning采用的是off-policy,如下图所示
在这里插入图片描述
但是为什么不需要重要性采样。其实从上图算法中可以看到,动作状态值函数是采用1-step更新的,每一步更新的动作状态值函数的R都是执行本次A得到的,而我们更新的动作状态值函数就是本次执行的动作A的 Q ( S , A ) Q(S,A) Q(S,A)。就算A不是通过 g r e e d y greedy greedy策略选择的(是通过 ϵ − g r e e d y \epsilon-greedy ϵgreedy采样得到),对 Q ( S , A ) Q(S,A) Q(S,A)估计的更新也不会受到任何影响。因为对于下一个动作的选取是贪心的 max ⁡ a Q ( s ′ , a ) \max_{a}Q(s',a) maxaQ(s,a)。但是如果是n-step更新,则会出现问题
Q ( s t , a t ) = Q ( s t , a t ) + α [ R t + γ R t + 1 + γ 2 max ⁡ a Q ( s t + 2 , a

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值