Adagrad

Adagrad

Adagrad [3,Adaptive Subgradient Methods for Online Learning and Stochastic Optimization] 就是这样一种解决这个问题的基于梯度的优化算法:根据参数来调整学习率,对于不常见的参数给予更大的更新,而对于常见的给予更小的更新。因此,Adagrad 非常适用于稀疏数据。Dean 等人 [4,Large Scale Distributed Deep Networks] 发现 Adagrad 能够大幅提高 SGD 的鲁棒性,并在 Google 用其训练大规模神经网络,这其中就包括 在 YouTube 中学习识别猫。除此之外,Pennington 等人 [5,Glove: Global Vectors for Word Representation] 使用 Adagrad 来训练 GloVe 词嵌入,因为罕见的词汇需要比常见词更大的更新。


在这里插入图片描述
在这里插入图片描述

Adagrad 最大的一个优点是我们可以不用手动的调整学习率。大多数实现使用一个默认值 0.01 。

Adagrad 主要的缺点是分母中累积的平方和梯度:由于每一个新添加的项都是正的,导致累积和在训练期间不断增大。这反过来导致学习率不断减小,最终变成无限小,这时算法已经不能再继续学习新东西了。下面的这个算法就解决了这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值