多元函数微分学(一)

1.1 基本概念

1.1.1 区域

  1. 邻域:
    设 P 0 ( x 0 , y 0 ) ∈ R 2 , δ 为 某 一 正 数 , 与 点 P 0 ( x 0 , y 0 ) 的 距 离 小 于 δ 的 点 P ( x , y ) 的 全 体 , 称 为 点 P 0 ( x 0 , y 0 ) 的 δ 领 域 , 记 作 U ( P 0 , δ ) 。 不 含 P 0 的 邻 域 , 在 几 何 上 为 去 心 δ 邻 域 。 设P_0(x_0,y_0)∈R^2,δ为某一正数,与点P_0(x_0,y_0)的距离小于δ的点P(x,y)的全体,称为点\newline P_0(x_0,y_0)的δ领域,记作U(P_0,δ)。不含P_0的邻域,在几何上为去心δ邻域。 P0(x0,y0)R2δP0(x0,y0)δP(x,y)P0(x0,y0)δU(P0,δ)P0δ
  2. 区域:
    对 于 任 意 一 点 P ∈ R 2 与 任 意 一 个 点 集 E ∈ R 2 : 若 存 在 点 P 的 邻 域 U ( P ) ⊂ E , 则 称 P 为 E 的 内 点 ; 若 存 在 点 P 的 领 域 U ( P ) ∩ E = Ø , 则 称 P 为 E 的 外 点 ; 若 点 P 的 任 一 领 域 U ( P ) 内 既 含 属 于 E 的 点 , 又 含 有 不 属 于 E 的 点 , 则 称 P 为 E 的 边 界 点 。 如 果 对 于 任 意 给 定 的 δ > 0 , 点 P 的 去 心 领 域 内 总 有 E 中 的 点 , 则 称 P 是 E 的 聚 点 。 如 果 点 集 E 的 点 都 是 E 的 内 点 , 则 称 E 为 开 集 。 如 果 点 集 E 的 余 集 为 开 集 , 则 称 E 为 闭 集 。 如 果 点 集 E 内 任 何 两 点 , 都 可 以 用 折 线 连 接 起 来 , 且 该 折 线 上 的 点 都 属 于 E , 则 称 E 为 连 通 集 。 对 于 平 面 点 集 E , 如 果 存 在 某 一 正 数 r , 使 得 E ⊂ U ( O , r ) , O 为 坐 标 原 点 , 则 称 E 为 有 界 集 , 否 则 为 无 界 集 。 连 通 的 开 集 为 开 区 域 , 开 区 域 连 同 它 的 边 界 成 为 闭 区 域 。 对于任意一点P∈R^2与任意一个点集E∈R^2:\newline 若存在点P的邻域U( P )⊂E,则称P为E的内点;\newline 若存在点P的领域U( P )∩E=Ø,则称P为E的外点;\newline 若点P的任一领域U( P )内既含属于E的点,又含有不属于E的点,则称P为E的边界点。\newline 如果对于任意给定的δ>0,点P的去心领域内总有E中的点,则称P是E的聚点。\newline 如果点集E的点都是E的内点,则称E为开集。如果点集E的余集为开集,则称E为闭集。\newline 如果点集E内任何两点,都可以用折线连接起来,且该折线上的点都属于E,则称E为连通集。\newline 对于平面点集E,如果存在某一正数r,使得E⊂U(O,r),O为坐标原点,则称E为有界集,否则为无界集。\newline 连通的开集为开区域,开区域连同它的边界成为闭区域。\newline PR2ER2PU(P)EPEPU(P)E=ØPEPU(P)EEPEδ>0PEPEEEEEEE线线EEEr使EU(O,r)OE

1.1.2 多元函数的概念

多元函数定义:

设 D 是 R n 的 一 个 非 空 子 集 , 从 D 到 实 数 集 R 的 一 个 映 射 f 成 为 定 义 在 D 上 的 一 个 n 元 实 值 函 数 , 记 作 f : D ⊂ R n → R , 或 y = f ( x ) = f ( x 1 , x 2 , . . . , x n ) , x ∈ D , 其 中 x 1 , x 2 , . . . , x n 称 为 自 变 量 , y 称 为 因 变 量 , D 称 为 函 数 f 的 定 义 域 , f ( D ) 称 为 函 数 f 的 值 域 , 并 且 称 R n + 1 中 的 子 集 ( x 1 , x 2 , . . . , x n , y ) 为 函 数 f ( x ) 在 D 上 的 图 像 设D是Rn的一个非空子集,从D到实数集R的一个映射f成为定义在D上的一个n元实值函数,记作f: D⊂R^n→R,或y=f(x)=f(x_1,x_2,...,x_n),x∈D,其中x_1,x_2,...,x_n称为自变量,y称为因变量,D称为函数f的定义域,f(D)称为函数f的值域,并且称R^{n+1}中的子集{(x_1,x_2,...,x_n,y)}为函数f(x)在D上的图像 DRnDRfDnf:DRnRy=f(x)=f(x1,x2,...,xn)xDx1,x2,...,xnyDff(D)fRn+1(x1,x2,...,xn,y)f(x)D

一元函数的单调性,奇偶性,周期性的定义在多元函数不再适用,但有界性的定义仍适用。

偏导数:将其他自变量看成固定的,对要求导的自变量进行求导

二阶及二阶以上的偏导数为高阶偏导数

1.1.3 全微分定义

设 函 数 z = f ( x , y ) , 在 点 ( x , y ) 的 某 领 域 内 有 定 义 , 如 果 函 数 z = f ( x , y ) 在 点 ( x , y ) 的 全 增 量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) 可 以 表 示 为 Δ z = A Δ x + B Δ y + o ( ρ ) , 其 中 A , B 不 依 赖 于 Δ x , Δ y , 仅 与 x , y 有 关 , ρ = Δ x 2 + ( Δ y ) 2 , 则 称 函 数 z 在 点 ( x , y ) 可 微 , A Δ x + B Δ y 称 为 函 数 z 在 点 ( x , y ) 处 的 全 微 分 。 设函数z=f(x,y),在点(x,y)的某领域内有定义,如果函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示为Δz= AΔx+BΔy+o(ρ),其中A,B不依赖于Δx,Δy,仅与x,y有关,ρ= \sqrt{Δx^2+(Δy)^2},则称函数z在点(x,y)可微,AΔx+BΔy称为函数z在点(x,y)处的全微分。 z=f(x,y)(x,y)z=f(x,y)(x,y)Δz=f(x+Δx,y+Δy)f(x,y)Δz=AΔx+BΔy+o(ρ)ABΔxΔyxyρ=Δx2+(Δy)2 z(x,y)AΔx+BΔyz(x,y)

一阶全微分不变性
在这里插入图片描述
补充:

拉普拉斯方程:

Laplace:

∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 \cfrac{∂^2z}{∂x^2}+\cfrac{∂^2z}{∂y^2}=0 x22z+y22z=0

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值