一、矩阵算子范数
1.提出
在计算中经常出现矩阵和向量的乘积,因此希望矩阵范数和向量范数间有某种协调性,因此提出了矩阵范数和向量范数的相容性:
- 注意写法:matrix:M,矩阵;vector:V,向量
上一次提到相容性,是在矩阵范数内部的相容性,是由于矩阵相乘所提出的
2.算子范数
由关系式:
定义的矩阵范数 为从属向量范数 的矩阵范数,简称 从属范数/算子范数
- 算子范数为矩阵范数
- 与向量范数是从属关系
通过证明,可知算子范数满足:
1.存在性
2.是矩阵范数(符合非负性、齐次性、三角不等式)
3.满足矩阵范数的相容性
3.具体算子范数
写法 | 名称 | 解释 | |
---|---|---|---|
1 | 列和范数 | 元素的模每列相加 → 选最大值 | |
∞ | 行和范数 | 元素的模每行相加 →选最大值 | |
2 | 谱范数 | λmax为最大特征值 |
※ 范数写法区分
目前已经提到了4种范数,分别为:
名称 | 写法 | 注意事项 |
---|---|---|
向量范数 | //x// | 在写到p-范数时,给范数加下标p |
向量加权范数 | //x//的下标为矩阵W | |
矩阵范数 | //A// | 写到具体的矩阵范数时,下标为 m1,m∞,F |
算子范数 | 算子范数的下标直接为 1,2,∞(区别于矩阵范数,下标没有m) |