数值分析总结笔记2——矩阵算子范数、相容矩阵范数性质

一、矩阵算子范数

1.提出

在计算中经常出现矩阵和向量的乘积,因此希望矩阵范数和向量范数间有某种协调性,因此提出了矩阵范数和向量范数相容性
在这里插入图片描述

  • 注意写法:matrix:M,矩阵;vector:V,向量

上一次提到相容性,是在矩阵范数内部的相容性,是由于矩阵相乘所提出的
在这里插入图片描述

2.算子范数

由关系式:

定义的矩阵范数 为从属向量范数 的矩阵范数,简称 从属范数/算子范数
在这里插入图片描述

  • 算子范数为矩阵范数
  • 与向量范数是从属关系

通过证明,可知算子范数满足:
1.存在性
2.是矩阵范数(符合非负性、齐次性、三角不等式)
3.满足矩阵范数的相容性

3.具体算子范数

写法名称解释
1在这里插入图片描述列和范数元素的模每列相加 → 选最大值
在这里插入图片描述行和范数元素的模每行相加 →选最大值
2在这里插入图片描述谱范数λmax为最大特征值

范数写法区分

目前已经提到了4种范数,分别为:

名称写法注意事项
向量范数//x//在写到p-范数时,给范数加下标p
向量加权范数在这里插入图片描述//x//的下标为矩阵W
矩阵范数//A//写到具体的矩阵范数时,下标为 m1,m∞,F
算子范数在这里插入图片描述算子范数的下标直接为 1,2,∞(区别于矩阵范数,下标没有m)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值