电磁学乱七八糟的符号(五)

电磁学乱七八糟的符号(五)

@(study)[Maxe, markdown_study, LaTex_study]

author:何伟宝


本来已经是不打算更得了,没想到到了最后还有一个重要的知识面没涵盖到,那就写一下吧

一般传输线方程

这一次需要被建模的类型是平行双导线,数学建模后是长这个样子的:
pic

由于直接从麦克斯韦方程式不好起手,所以这里注重求电压电流的解和关系

分布参量

长短线

为了便于分析,定义 l λ \frac {l}{\lambda} λl为传输线的电长度,并且定义长短线:
低 频 电 路 ⟷ l λ &lt; 1 ⟷ 短 线 低频电路\longleftrightarrow \frac {l}{\lambda}&lt;1 \longleftrightarrow 短线 λl<1线
高 频 电 路 ⟷ l λ &gt; 1 ⟷ 长 线 高频电路\longleftrightarrow \frac {l}{\lambda}&gt;1 \longleftrightarrow 长线 λl>1线

分布参量

如上图的一些电阻电容电感电导,由下表给出:
|| | 平 行 双 导 线 | 同 轴 导 线|
| :-: | :------? :–: |
| 分布电容 C 0 ( F / m ) C_0(F/m) C0(F/m)| π ε l n 2 D d \frac {\pi\varepsilon}{ln\frac{2D}d} lnd2Dπε| 2 π ε l n b a \frac {2\pi\varepsilon}{ln\frac{b}a} lnab2πε|
| 分布电感 L 0 ( H / m ) L_0(H/m) L0(H/m)| μ π l n 2 D d \frac{\mu}{\pi}ln\frac{2D}d πμlnd2D| μ 2 π l n b a \frac{\mu}{2\pi}ln\frac{b}a 2πμlnab|
| 分布电阻 R 0 ( Ω / m ) R_0(\Omega/m) R0(Ω/m) | 2 π d ω μ c 2 σ c \frac2{\pi d}\sqrt{\frac{\omega \mu_c}{2\sigma_c}} πd22σcωμc | 1 π ω μ c 2 σ c ( 1 b + 1 a ) \frac1{\pi}\sqrt{\frac{\omega \mu_c}{2\sigma_c}}(\frac1b +\frac 1a) π12σcωμc (b1+a1)|
| 分布电导 G 0 ( S / m ) G_0(S/m) G0(S/m) | π σ l n 2 D d \frac {\pi\sigma}{ln\frac{2D}d} lnd2Dπσ| 2 π σ l n b a \frac {2\pi\sigma}{ln\frac{b}a} lnab2πσ|

但是题目一般会给出,所以就不多说了,重点是**单位!**如果题目给出总的,一点要记得除以长度

稳态解

忙于复习,就直接上结论了

电报方程/电报方程

d U ( z ) d z = Z 0 I ( z ) \frac {dU(z)}{dz}=Z_0I(z) dzdU(z)=Z0I(z)
d U ( z ) d z = Y 0 I ( z ) \frac {dU(z)}{dz}=Y_0I(z) dzdU(z)=Y0I(z)

串联阻抗和并联导纳

由上式定义了:
Z 0 = R 0 + j ω L 0 , Y 0 = G 0 + j ω C 0 Z_0=R_0+j\omega L_0 \quad ,\quad Y_0=G_0+j\omega C_0 Z0=R0+jωL0,Y0=G0+jωC0

波动方程

同样地做分离U,I两个变量得:
d 2 U ( z ) d z 2 − γ 2 U ( z ) = 0 \frac {d^2U(z)}{dz^2}-\gamma^2U(z)=0 dz2d2U(z)γ2U(z)=0
d 2 I ( z ) d z 2 − γ 2 I ( z ) = 0 \frac {d^2I(z)}{dz^2}-\gamma^2I(z)=0 dz2d2I(z)γ2I(z)=0
所以可以很容易得求得通解:
U ( z ) = A e γ z + B e − γ z U(z)=Ae^{\gamma z}+Be^{-\gamma z} U(z)=Aeγz+Beγz
回代到电压的一阶微分式有:
I ( z ) = 1 Z 0 d U ( z ) d z = 1 Z c ( A e γ z + B e − γ z ) I(z)=\frac1{Z_0}\frac{dU(z)}{dz}=\frac1{Z_c}(Ae^{\gamma z}+Be^{-\gamma z}) I(z)=Z01dzdU(z)=Zc1(Aeγz+Beγz)

特征阻抗 Z c Z_c Zc

可以看出,特征阻抗是描述传输线上电压电流转换关系的,而且有:
Z c = Z 0 Y 0 = R 0 + j ω L 0 G 0 + j ω C 0 Z_c=\sqrt{\frac{Z_0}{Y_0}}=\sqrt{\frac{R_0+j\omega L_0}{G_0+j\omega C_0}} Zc=Y0Z0 =G0+jωC0R0+jωL0
所以这里的特征阻抗和前面说的波阻抗有点像.

传播常数 γ \gamma γ&&衰减常数&&相位常数

又是熟悉的字母,又是熟悉的定义:
γ = Z 0 Y 0 = ( R 0 + j ω L 0 ) ( G 0 + j ω C 0 ) = α + j β \gamma=\sqrt{Z_0Y_0}=\sqrt{(R_0+j\omega L_0)(G_0+j\omega C_0)}=\alpha + j \beta γ=Z0Y0 =(R0+jωL0)(G0+jωC0) =α+jβ
γ \gamma γ称为传输线上电压波和电流波的传播常数 , α \alpha α为衰减常数 , β \beta β为相位常数

任意点电压电流

对一般传输线:
U ( z ) = U 0 + I 0 Z c 2 e γ z + U 0 − I 0 Z c 2 e − γ z U(z)=\frac{U_0+I_0 Z_c}2 e^{\gamma z}+\frac{U_0-I_0 Z_c}2 e^{-\gamma z} U(z)=2U0+I0Zceγz+2U0I0Zceγz
U ( z ) = 1 Z c ( U 0 + I 0 Z c 2 e γ z − U 0 − I 0 Z c 2 e − γ z ) U(z)=\frac1{Z_c}(\frac{U_0+I_0 Z_c}2 e^{\gamma z}-\frac{U_0-I_0 Z_c}2 e^{-\gamma z}) U(z)=Zc1(2U0+I0Zceγz2U0I0Zceγz)
对无损耗传输线,有 γ = j β \gamma=j\beta γ=jβ,(划重点)
U ( z ) = U 0 c o s β z + j I 0 Z c s i n β z U(z)=U_0cos\beta z+jI_0Z_c sin\beta z U(z)=U0cosβz+jI0Zcsinβz
U ( z ) = I 0 c o s β z + j U 0 Z c s i n β z U(z)=I_0cos\beta z+j\frac{U_0}{Z_c} sin\beta z U(z)=I0cosβz+jZcU0sinβz

传输特性

由于某些原因,这里可能偏向无损耗传输线,也就是 R 0 = 0 , G 0 = 0 R_0=0 \quad,\quad G_0=0 R0=0,G0=0

特性阻抗

无损耗传输线中:
Z c = L 0 C 0 Z_c=\sqrt{\frac{L_0}{C_0}} Zc=C0L0

传播常数

无损耗传输线中:
γ = j β , α = 0 , β = ω L 0 C 0 \gamma=j\beta \quad,\quad \alpha=0 \quad,\quad \beta=\omega\sqrt{L_0 C_0} γ=jβ,α=0,β=ωL0C0

相速与波长

参考前面的定义,可以定义传输波的相速为:
v p = ω β = 1 L 0 C 0 v_p=\frac{\omega}{\beta}=\frac1{\sqrt{L_0 C_0}} vp=βω=L0C0 1
同理定义波长:
λ = 2 π β \lambda=\frac{2\pi}{\beta} λ=β2π

工作状态

输入阻抗

从图形上看,无损耗传输线,输入阻抗是这样的:
z_in
注意这里的起点不一定是z=0,可以是任意点往负载方向看的阻抗,所以由前面的公式可以知道:
Z i n ( z ) = U ( z ) I ( z ) = Z c Z L + j Z c t a n β z Z c + j Z L t a n β z Z_{in}(z)=\frac{U(z)}{I(z)}=Z_c\frac{Z_L+jZ_ctan\beta z}{Z_c+jZ_Ltan\beta z} Zin(z)=I(z)U(z)=ZcZc+jZLtanβzZL+jZctanβz

特别地(习题结论),
考虑传播线开路,即 Z L → ∞ Z_L\rightarrow\infty ZL时:
对公式中的分式 Z L Z_L ZL作洛必达法则,可得到开路输入阻抗 Z i n o Z_{ino} Zino:
(1.1) Z i n o = − j Z c c o t β z Z_{ino}=-jZ_c cot\beta z \tag{1.1} Zino=jZccotβz(1.1)
同理考虑传播线开路,即$Z_L\rightarrow 0 时 : 代 入 原 公 式 得 短 路 输 入 阻 抗 时: 代入原公式得短路输入阻抗 :Z_{ins}$:
(1.2) Z i n s = j Z c t a n β z Z_{ins}=jZ_c tan\beta z \tag{1.2} Zins=jZctanβz(1.2)

(1.1)*(1.2)得:
Z c = Z i n o Z i n s Z_c=\sqrt{Z_{ino}Z_{ins}} Zc=ZinoZins
(1.1)/(1.2)得:
β = 1 z a r c t a n Z i n s Z i n o \beta=\frac1z arctan\sqrt{\frac{Z_{ins}} {Z_{ino}}} β=z1arctanZinoZins
###反射系数
描述的就好像是,以某一点的一个电压波为基准,
然后那个电压波通过传输先跑到了对面,对原来的电压波的影响:
自然地,电压波跑过的路程是2z,所以有:
Γ ( z ) = Γ 0 e − 2 j β z Γ 0 = ∣ Γ 0 ∣ e j φ 0 \Gamma(z)=\Gamma_0 e^{-2j\beta z}\quad \quad \Gamma_0=|\Gamma_0| e^{j\varphi_0} Γ(z)=Γ0e2jβzΓ0=Γ0ejφ0
其中 Γ 0 \Gamma_0 Γ0称为传输线的终端电压反射系数 φ \varphi φ是辅角,对无损耗传输线来说, ∣ Γ ( z ) ∣ = ∣ Γ 0 ∣ |\Gamma(z)|=|\Gamma_0| Γ(z)=Γ0

驻波系数&&行波系数

驻波系数:
ρ = ∣ U ( z ) ∣ m a x ∣ U ( z ) ∣ m i n \rho=\frac{|U(z)|_{max}}{|U(z)|_{min}} ρ=U(z)minU(z)max
行波系数:
K = 1 ρ = ∣ U ( z ) ∣ m i n ∣ U ( z ) ∣ m a x K=\frac1\rho=\frac{|U(z)|_{min}}{|U(z)|_{max}} K=ρ1=U(z)maxU(z)min

参量间关系

因为这里是重点,所以这里给出常用公式,推导就自行看书了…
Z i n ( z ) = Z c 1 + Γ ( z ) 1 − Γ ( z ) Γ ( z ) = Z i n ( z ) − Z c Z i n ( z ) + Z c Z_{in}(z)=Z_c\frac{1+\Gamma(z)}{1-\Gamma(z)}\quad \quad\Gamma(z)=\frac{Z_{in}(z)-Z_c}{Z_{in}(z)+Z_c} Zin(z)=Zc1Γ(z)1+Γ(z)Γ(z)=Zin(z)+ZcZin(z)Zc

Z L = Z c 1 + Γ 0 1 − Γ 0 Γ 0 = Z L − Z c Z L + Z c Z_{L}=Z_c\frac{1+\Gamma_0}{1-\Gamma_0}\quad \quad \quad\Gamma_0=\frac{Z_L-Z_c}{Z_L+Z_c} ZL=Zc1Γ01+Γ0Γ0=ZL+ZcZLZc

ρ = 1 + ∣ Γ 0 ∣ 1 − ∣ Γ 0 ∣ ∣ Γ ( z ) ∣ = ∣ Γ 0 ∣ = ρ − 1 ρ + 1 \rho=\frac{1+|\Gamma_0|}{1-|\Gamma_0|}\quad \quad\quad \quad \quad |\Gamma(z)|=|\Gamma_0|=\frac{\rho-1}{\rho+1} ρ=1Γ01+Γ0Γ(z)=Γ0=ρ+1ρ1

行波状态

在反射系数 Γ ( z ) = 0 \Gamma(z)=0 Γ(z)=0时,显然没有反射波,即 U − ( z ) = 0 U^-(z)=0 U(z)=0
所以有以下结论:

  1. 沿线电压和电流振幅不变:
    U ( z ) = U + ( z ) = U 0 + I 0 Z c 2 e γ z = U 0 + e γ z U(z)=U^+(z)=\frac{U_0+I_0 Z_c}2 e^{\gamma z}=U^+_0e^{\gamma z} U(z)=U+(z)=2U0+I0Zceγz=U0+eγz
    I ( z ) = I + ( z ) = U 0 + I 0 Z c 2 Z c e γ z = U 0 + Z c e γ z I(z)=I^+(z)=\frac{U_0+I_0 Z_c}{2Z_c} e^{\gamma z}=\frac{U^+_0}{Z_c}e^{\gamma z} I(z)=I+(z)=2ZcU0+I0Zceγz=ZcU0+eγz
  2. 沿线电压和电流相位相同:
    u ( z , t ) = ∣ U 0 + ∣ c o s ( ω t + β z + φ 0 ) u(z,t)=|U^+_0|cos(\omega t+\beta z +\varphi_0) u(z,t)=U0+cos(ωt+βz+φ0)
    i ( z , t ) = ∣ U 0 + ∣ Z c c o s ( ω t + β z + φ 0 ) i(z,t)=\frac{|U^+_0|}{Z_c}cos(\omega t+\beta z +\varphi_0) i(z,t)=ZcU0+cos(ωt+βz+φ0)
  3. 沿线各点输入阻抗等于其特性阻抗:
    Z i n ( z ) = Z c Z_{in}(z)=Z_c Zin(z)=Zc

驻波状态

在反射系数 ∣ Γ ( z ) ∣ = 1 |\Gamma(z)|=1 Γ(z)=1时,显然反射波和入射波相叠(所以有个系数2)加成纯驻波,不对外吸收或传输能量

显然只有在负载短路,开路,纯电抗(不损耗能量)时有 ∣ Γ ( z ) ∣ = 1 |\Gamma(z)|=1 Γ(z)=1

这里就直接上结论了(以 Z L = 0 Z_L=0 ZL=0)为例:
U ( z ) = j 2 U 0 + s i n β z U(z)=j2U^+_0sin\beta z U(z)=j2U0+sinβz
I ( z ) = 2 I 0 + c o s β z I(z)=2I^+_0cos\beta z I(z)=2I0+cosβz
可以看出这里电压和电流差了一个 π 2 \frac \pi 2 2π的相位 ,由于总路程是2z,所以引起的相移是 λ 4 \frac{\lambda}4 4λ
 
 
此时传输线上任意一点的输入阻抗为:
Z i n ( z ) = j Z c t a n β z Z_in(z)=jZ_ctan\beta z Zin(z)=jZctanβz

λ 4 \frac \lambda 4 4λ阻抗变换性

特别地,考虑:
Γ ( z ) = Γ 0 e − 2 j β z \Gamma(z)=\Gamma_0 e^{-2j\beta z}\quad \quad Γ(z)=Γ0e2jβz
可以清晰地看出,每当z改变 λ 4 \frac \lambda 4 4λ时,反射系数就会取反,称为阻抗变换性

混合波状态

相当于上面两个的结合,主要特征保留这样子:
U ( z ) = U 0 + e j β z ( 1 − Γ 0 ) + 2 Γ 0 U 0 + c o s β z U(z)=U^+_0 e^{j\beta z}(1-\Gamma_0)+2\Gamma_0 U^+_0 cos\beta z U(z)=U0+ejβz(1Γ0)+2Γ0U0+cosβz
I ( z ) = I 0 + e j β z ( 1 − Γ 0 ) + j 2 Γ 0 U 0 + c o s β z I(z)=I^+_0 e^{j\beta z}(1-\Gamma_0)+j2\Gamma_0 U^+_0 cos\beta z I(z)=I0+ejβz(1Γ0)+j2Γ0U0+cosβz

阻抗匹配

共轭阻抗匹配

向负载方向看去的输入阻抗与向微波信源方向看去的输入阻抗的共轭值相等:
Z i n = Z g ∗ Z_{in}=Z^*_g Zin=Zg

源阻抗匹配

微波信源的内阻抗等于传输线的特性阻抗:
Z g = Z c Z_g=Z_c Zg=Zc

负载阻抗匹配

负载阻抗等于传输线的特性阻抗:
Z L = Z c Z_L=Z_c ZL=Zc

结语

这次是真的再见了!
如果你想请我吃个南五的话

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小何的芯像石头

谢谢你嘞,建议用用我的链接

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值