【Papers】利用无监督正则化进行半监督遥感图像分割

  1. Deep Learning-Based Change Detection in Remote Sensing Images: A Review

    • 作者: Ayesha Shafique, Guo Cao, Zia Khan, Muhammad Asad, Muhammad Aslam
    • 摘要: 本综述关注了遥感图像中的变化检测技术,特别是深度学习技术在变化检测过程中的应用,包括监督、无监督和半监督方法。讨论了这些方法在SAR、多光谱、高光谱、VHR和异构图像等不同变化检测数据集上的优点和缺点。
    • 引用次数: 60
    • PDF链接
  2. Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery

    • 作者: Eftychios E. Protopapadakis, A. Doulamis, N. Doulamis, E. Maltezos
    • 摘要: 本文提出了一种由堆叠自动编码器驱动的半监督学习深度神经网络,用于从近红外遥感图像中提取建筑物。该方法使用极小部分标记数据进行深度模型训练,并应用新颖的半监督技术估计大量现有未标记数据的软标签,从而显著减少了手动注释过程所需的努力和时间。
    • 引用次数: 44
    • PDF链接
  3. Semantic Segmentation of Remote Sensing Images With Sparse Annotations

    • 作者: Yuansheng Hua, Diego Marcos, Lichao Mou, Xiaoxiang Zhu, D. Tuia
    • 摘要: 本文提出了一种基于不完全注释的航空图像语义分割框架,其中注释者被要求使用易于绘制的涂鸦标记少量像素。通过提出的FEature和Spatial relaTional regulArization(FESTA)方法,利用这些稀疏涂鸦注释,同时考虑空间和特征术语中的邻域结构。
    • 引用次数: 42
    • PDF链接
  4. Semi-Supervised Remote Sensing Image Semantic Segmentation via Consistency Regularization and Average Update of Pseudo-Label

    • 作者: Jiaxin Wang, C. Ding, Sibao Chen, Chenggang He, Bin Luo
    • 摘要: 本文提出了一种基于半监督学习的遥感图像分割方法,首先设计了一种一致性正则化(CR)训练方法,然后使用新学习的模型进行伪标签的平均更新,并最终结合伪标签和强标签来训练语义分割网络。
    • 引用次数: 36
    • PDF链接
  5. Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery

    • 作者: Bidroha Basu, S. Sannigrahi, Arunima Sarkar Basu, F. Pilla
    • 摘要: 本研究使用高分辨率Sentinel-2卫星遥感图像检测沿海水体中的漂浮塑料碎片。开发了两种无监督(K-means和模糊c-means(FCM))和两种监督(支持向量回归(SVR)和半监督模糊c-means(SFCM))分类算法来识别漂浮塑料。
    • 引用次数: 25
    • PDF链接
  6. Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

    • 作者: Peiyao Yan, Feng He, Yajie Yang, Fei Hu
    • 摘要: 本文介绍了半监督学习到生成对抗网络(GAN)中,使判别器从标记数据和未标记数据中学习更具区分性的特征。此外,还将mixup数据增强方法引入分类模型中,以增强数据并稳定训练过程。
    • 引用次数: 20
    • PDF链接
  7. Dual-Consistency Semi-Supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images

    • 作者: Yanwen Li, Luyang Luo, Huangjing Lin, Hao Chen, P. Heng
    • 摘要: 本文提出了一种不确定性引导的双一致性学习网络(UDC-Net)用于CT图像中的COVID-19病变分割的半监督学习。该方法同时施加图像转换等效性和特征扰动不变性,有效地利用未标记数据的知识。
    • 引用次数: 20
    • PDF链接
  8. Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach

    • 作者: V. Manian, Estefanía Alfaro-Mejía, R. Tokars
    • 摘要: 本文提出了一种半监督方法用于高光谱图像的标记和分类。无监督阶段包括图像增强、聚类和生成地面真实图像。监督阶段包括预处理和机器学习模型集合,最后通过多数投票对图像进行标记。
    • 引用次数: 9
    • PDF链接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值