论文笔记--SemSUM: Semantic Dependency Guided Neural Abstractive Summarization

SemSUM是一种新的摘要生成方法,它结合句法依存分析以提高文本摘要的准确性和流畅性。模型包括句子编码层、图编码层和摘要生成层。图编码层利用图自注意力机制,将句法依存关系作为三元组输入,增强模型的理解能力。实验结果显示,SemSUM在多项评估指标上表现出色,特别是在文本的忠实度和信息量方面达到最优。
摘要由CSDN通过智能技术生成

1. 文章简介

  • 标题:SemSUM: Semantic Dependency Guided Neural Abstractive Summarization
  • 作者:Hanqi Jin, Tianming Wang, Xiaojun Wan
  • 日期:2022/04/03
  • 期刊:AAAI

2. 文章导读

2.1 概括

文章提出了一种新的摘要生成方法,通过结合句法依存分析,使得模型生成的文本摘要更准确、流畅。模型设计架构如下:
模型架构
SemSUM模型包含一个句子编码层,一个图编码层和一个摘要生成(解码)层,通过将句法依存关系注入到语言模型中,整体表现持平甚至超过State-of-the-art水平。

2.2 文章重点技术

2.2.1 Sentence Encoder 句子编码层

这时候又要拿出这张经典神图了:
Attention

没错,文章的句子编码层是几乎完全按照这张经典神图的Encoder部分进行架构的,这里简要介绍下:

  • Encoder层分为 L 1 L1 L1 个layers,文章设置 L 1 = 4 L1=4 L1=4,也就是上图红框内的部分层包含一个
  • 每个Layer包含两个Sub-Layers:多头自注意力机制层和前馈层
  • 多头自注意力制层由key, query, value及其权重构成,学习到每个Token对句子中其它所有Token的注意力,再将多头进行拼接。其中自注意力得分为
    A t t n ( Q , K , V ) = S o f t m a x ( Q K T d k ) V Attn(Q, K, V) = Softmax (\frac{QK^T}{\sqrt{d_k}}) V Attn(Q,K,V)=Softmax(dk QKT)V
  • 前馈层(Feed Forward)采用Relu激活函数:
    F F N ( x ) = m a x ( 0 , x W 1 + b 1 ) W 2 + b 2 FFN(x) = max(0,xW1 +b1)W2 +b2 FFN(x)=max(0,xW1+b1)W2+b2
  • 上述两层分别增加残差连接层和LayerNormalization,最后分别输出 s = L a y e r N o r m ( s l − 1 + M H A t t ( s l − 1 , s l − 1 , s l − 1 ) ) s l = L a y e r N o r m ( s + F F N ( s ) ) s = LayerNorm (s^{l - 1}+ MHAtt(s^{l - 1}, s^{l - 1}, s^{l - 1}))\\ s^l = LayerNorm (s + FFN(s)) s=LayerNorm(sl1+MHAtt(sl1,sl1,sl1))sl=LayerNorm(s+
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值