论文笔记--Vecalign: Improved Sentence Alignment in Linear Time and Space
1. 文章简介
- 标题:Vecalign: Improved Sentence Alignment in Linear Time and Space
- 作者:Brian Thompson, Philipp Koehn
- 日期:2019
- 期刊:ACL
2. 文章导读
2.1 概括
文章通过使用目标语言和源语言的向量嵌入,给出了一种仅消耗线性时间、空间复杂度(相对于句子数量俩说)的新型的句子对齐方法。相比于State-of-the-art方法性能有所提升。
一般来说,句子对齐可分解为两个步骤: 1)计算得分函数,表示源句子与与其相邻的句子的相似度 2)输入源文档和翻译文档,通过得分函数将源文档和目标翻译文档的句子进行配对。文章在上述两部分均进行了改良:1) 文章定义了一个新型的得分函数 2) 文章改良了文档匹配的动态规划(DP, Dynamic Progamming)过程,得到了线性时间空间复杂度的算法,在原有的二次复杂度基础上大幅提升了计算效率。
2.2 文章重点技术
2.2.1 句子嵌入
文章通过识别句子嵌入之间的相似度得到句子对齐关系。这里采用多语言(93种语言)开源句子表示库LASER来得到源句子和目标句子的嵌入。
2.2.2 相似度
文章选用Cosine Similarity来进行相似度度量: cos ( A ⃗ , B ⃗ ) = A ⃗ ⋅ B ⃗ ∥ A ⃗ ∥ ∥ B ⃗ ∥ ∈ [ − 1 , 1 ] \begin{equation}\cos(\vec{A}, \vec{B}) = \frac {\vec{A}\cdot \vec{B}}{\Vert\vec{A}\Vert \Vert\vec{B}\Vert}\in [-1,1]\end{equation} cos(A,B)=∥A∥∥B