对于GAN中min maxV(D,G)的理解

原来看过一遍,还是忘了,今天在这里做个笔记,给自己提个醒。
在这里插入图片描述
这个公式是最大化D和最小化G,xPdata(x)是样本中采样的真实图片,D(x)是真实图片的概率;zPz(z)指生成一份随机噪声z;G(z)是噪声z通过生成器生成的图片,D(G(z))是这个生成图片是真实图片的概率。期望E是因为每次训练的时候一批一批地输入。
在这里插入图片描述
对于D而言,我们希望判定真实图片的概率高,假图片的判别低,但是D(x)和D(G(z))一个大一个小可不行,,所以我们在这里用1-D(G(z)),让两项变得都大,让D最大化。
在这里插入图片描述
对于G而言,我们希望生成假图片更真实,D(G(z))更大,为了统一,我们就使用1-D(G(z)),让G最小化。

转载自https://blog.csdn.net/on2way/article/details/72773771
https://www.cnblogs.com/dynmi/p/12142722.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值