【算法和数据结构】斐波那契数列 II

标签:mod运算性质,动态规划

分析:

n很大,如果直接求出斐波那契数列的值再去求mod,从来存储数列值的变量会溢出。

考虑斐波那契数列的形式:f(n) = f(n - 1) + f(n -2),可以有:

f(n) \; mod \; M = (f(n - 1) + f(n - 2))\; mod \; M

根据取mod的性质:

1. (A + B) \;\; mod \; \; C = (A \;\;mod \;\;C + B \;\;mod \;\;C ) \;\;mod \;\;C \\ = (A \;\;mod \;\;C + B) \;\;mod \;\;C = (A + B \;\;mod \;\;C ) \;\;mod \;\;C

2. A\;\;mod \;\; n = ((((A \;\; mod \;\; n)\;\; mod \;\; n)\;\; mod \;\;n) \cdots \;\;mod \;\; n)

从而:

f(n) \; mod \; M = (f(n - 1) \;\; mod \;\; M+ f(n - 2)\;\; mod \;\; M) \;\; mod \;\; M

总结一下,为了避免数mod之前数变的太大,不停的mod就行,两个数相加取mod一个数,可以把相加的两个数先都mod n次,也可以一个mod一个不mod,随意。

代码:

#include <iostream>
using namespace std;

int main() {
    int num = 1;
    cin >> num;
    int res = 1;

    if (num <= 2) {
        cout << res << endl;
    }
    else {
        int f1 = 1, f2 = 1;
        for (int i = 3; i <= num; i++) {
            res = (f1 + f2) % 1000000007;
            f1 = f2 % 1000000007;
            f2 = res;
        }
        cout << res;
        cout << endl;
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值