机器学习之指标和评分:量化预测的质量

本文探讨了机器学习中的评估指标,包括分类任务的classification_report、f1_score、precision_score、recall_score、roc_auc_score、roc_curve、confusion_matrix和accuracy_score,以及回归任务的Max error、Mean absolute error、Mean squared error和R²得分。这些工具用于量化预测模型的性能,帮助优化模型选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章参考:https://scikit-learn.org/stable/modules/model_evaluation.html#clustering-metrics

1、分类指标 Classification Metrics

sklearn.metrics 模块实现了一些损失、评分和实用函数衡量分类的性能。一些指标可能需要对正类、置信度值、或二进制决策值的概率估计。大部分实现都允许每个样本通过sample_weight参数为总评分提供加权贡献。

(1)classification_report 函数:显示主要分类指标的文本报告,在报告中显示每个类别的精确度、召回率、F1值等信息。

sklearn.metrics.classfication_report(y_true,y_pred,labels=None.target_names=None,sample_weight=None,digits=2,output_dict=False)
  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels :包含的标签索引的可选列表
  • target_names:目标类别名称
  • digits:输出浮点值的位数
  • return : 每个类别精确率和召回率、F1值
from sklearn.metrics import classification_report

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))
             precision    recall  f1-score   support

     class 0       0.50      1.00      0.67         1
     class 1       0.00      0.00      0.00         1
     class 2       1.00      0.67      0.80         3

    accuracy                           0.60         5
   macro avg       0.50      0.56      0.49         5
weighted avg       0.70      0.60      0.61         5

其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和).
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1值.

(2)sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=Nonezero_division='warn')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值