深度学习笔记(3)-pytorch模型训练流程&实现小GPU显存跑大Batchsize

本文介绍了PyTorch深度学习模型的训练流程,包括optimizer.zero_grad(), loss.backward(), 和optimizer.step()的使用。同时,针对小GPU显存问题,提出了使用梯度累加来等效增大Batchsize的方法,详细解释了其工作原理和注意事项,以实现更好的模型训练效果。" 108724113,7435727,Ubuntu环境下Python实现YoloV3,"['Python', '深度学习', '目标检测', 'OpenCV', '计算机视觉']
摘要由CSDN通过智能技术生成

近期在进行pytorch模型的训练,对pytorch的流程进行一次简单梳理作为笔记。此外,由于GPU显存有限,数据的Batchsize一般只能到2,而相关资料显示较大的Batchsize有利于提高模型训练效果,经查阅资料,找到通过梯度累加的方式来等效增大Batchsize。

一、pytorch模型训练流程

在用pytorch训练模型时,通常会在遍历epochs的过程中依次用到optimizer.zero_grad(), loss.backward()和optimizer.step()三个函数,如下所示:

model = MyModel()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
 
for epoch in range(1, epochs):
    for i, (inputs, labels
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值