深度学习笔记 - FCN模型与上采样(Upsampling)

本文介绍了FCN模型,它是2014年提出的全卷积网络,用于语义分割,通过卷积和上采样层替换传统CNN的全连接层。上采样是图像恢复分辨率的技术,包括反卷积和反池化等方法。反卷积通过数学和动态过程理解,而反池化分为反最大池化和反平均池化。
摘要由CSDN通过智能技术生成

目录

1. FCN模型

2. 上采样

2.1 双线性插值上采样(今天不做重点介绍)

2.2 反卷积上采样

(1)数学理解

(2)动态过程理解

2.3 反池化上采样


引言:在FCN、U-net等网络结构中,涉及到了上采样。上采样概念:上采样指的是任何可以让图像变成更高分辨率的技术

发现了几个较好的教程帮助理解FCN和上采样:

(1)教程1:FCN详解与pytorch简单实现;反卷积的数学理解

(2)教程2:3种上采样方法(反卷积,上池化,线性插值)

1. FCN模型

CNN与FCN模型

                                                                                                                                                                                                    

FCN模型具体过程

                                                                                                                                                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值