查找所引用的文献在某种期刊下的引用格式(引用风格)

当我们要引用一篇文献时,常常需要知道这篇文献在某种期刊下的引用格式是怎样的。举个例子,我需要查找“Gradient-based learning applied to document recognition”这篇文献在Neuroimage期刊下的引用格式怎么写。

首先在谷歌学术上搜索“Gradient-based learning applied to document recognition”这篇文献,点击被引用次数:

 

点进来之后就可以看到引用了这篇文献的所有论文。勾选在引用文章中搜索:

 

 搜索:“Neuroimage”

就可以看到所有引用了这篇文献的Neuroimage期刊文章,下载这些文章并查看这些文章是怎么引用这篇文献的

ARIMA-LSTM组合模型是一种结合ARIMA模型LSTM模型的混合模型ARIMA模型是一种时间序列预测模型,通过对时间序列数据的拟合差分运算来捕捉数据的趋势、季节性随机性。而LSTM模型是一种基于循环神经网络的模型,特别适用于处理序列数据,具有记忆能力长期依赖分析能力。 ARIMA-LSTM组合模型的基本思想是,在ARIMA模型的基础上,将ARIMA模型的预测误差作为LSTM模型的输入,利用LSTM模型来进一步改进优化ARIMA模型的预测结果。通过这种组合方式,可以将ARIMA模型LSTM模型的优点相结合,提高预测的准确性稳定性。 具体实现上,首先使用ARIMA模型对时间序列数据进行拟合预测,得到ARIMA预测结果。然后,将ARIMA模型的预测误差作为LSTM模型的输入,使用LSTM模型来预测并校正ARIMA模型的预测结果。最终,将ARIMA模型LSTM模型的预测结果加权融合,得到最终的预测结果。 ARIMA-LSTM组合模型的优点在于能够兼顾ARIMA模型LSTM模型的优势,ARIMA模型能够捕捉到时间序列数据的特征,而LSTM模型能够处理序列数据的长期依赖关系。通过将两者结合,可以提高预测的精度,尤其适用于复杂的时间序列数据预测任务。 总之,ARIMA-LSTM组合模型是一种通过结合ARIMA模型LSTM模型的混合模型,能够有效提高时间序列数据预测的准确性稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值