ARIMA-LSTM混合模型构建与时间序列预测【matlab代码】

✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


在单变量时间序列预测中,ARIMA和LSTM模型具有各自的优势:ARIMA模型能够较好地处理时间序列中的线性部分,尤其是在处理长期趋势时表现较佳;而LSTM(长短期记忆网络)模型则擅长捕捉序列中的非线性依赖关系。为此,本文构建了一种ARIMA-LSTM组合模型,利用ARIMA模型预测时间序列中的长期线性趋势,利用LSTM模型拟合非线性部分,从而实现对时间序列的全面预测。

1. ARIMA-LSTM模型概述

ARIMA模型通过对序列的平稳化处理(包括差分、移动平均等),能够有效捕捉数据的线性趋势。然而,单独使用ARIMA模型在处理含有复杂非线性动态的时间序列时,效果有限。LSTM模型利用其记忆单元和门控机制,能够捕捉时间序列中的长期依赖和非线性特征。因此,ARIMA-LSTM混合模型的设计思路是:

  1. 使用ARIMA模型对时间序列中的线性趋势进行预测;
  2. 将ARIMA的残差部分作为LSTM模型的输入,进行非线性特征的拟合;
  3. 将两者的预测结果进行加权组合,得到最终的预测结果。
  4. % 数据加载
    data = load('time_series_data.mat');  % 假设数据已存储在MAT文件中
    time_series = data.series;  % 获取时间序列
    
    % 数据预处理:划分训练集和测试集
    train_size = floor(0.8 * length(time_series));  % 80%数据用于训练
    train_data = time_series(1:train_size);
    test_data = time_series(train_size+1:end);
    
    %% 1. ARIMA模型拟合与预测
    % ARIMA模型拟合(假设ARIMA(2,1,2))
    model = arima(2,1,2);
    arima_fit = estimate(model, train_data);
    
    % 使用ARIMA模型进行预测
    arima_pred = forecast(arima_fit, length(test_data));
    
    % 计算ARIMA的残差
    arima_residuals = train_data - infer(arima_fit, train_data);
    
    %% 2. LSTM模型训练与预测
    % LSTM输入数据的准备(使用ARIMA残差进行训练)
    sequence_input = arima_residuals;
    
    % 归一化处理
    mu = mean(sequence_input);
    sigma = std(sequence_input);
    sequence_input = (sequence_input - mu) / sigma;
    
    % 将序列转换为LSTM格式(输入为特征,输出为下一时间点的残差)
    XTrain = sequence_input(1:end-1)';
    YTrain = sequence_input(2:end)';
    
    % 定义LSTM网络结构
    layers = [ ...
        sequenceInputLayer(1)
        lstmLayer(50, 'OutputMode', 'sequence')
        fullyConnectedLayer(1)
        regressionLayer];
    
    % 训练选项
    options = trainingOptions('adam', ...
        'MaxEpochs', 250, ...
        'InitialLearnRate', 0.005, ...
        'MiniBatchSize', 20, ...
        'Plots', 'training-progress', ...
        'Verbose', 0);
    
    % 训练LSTM模型
    net = trainNetwork(XTrain, YTrain, layers, options);
    
    % LSTM预测(使用ARIMA预测的残差)
    XTest = (test_data - arima_pred - mu) / sigma;  % 使用ARIMA预测残差作为LSTM输入
    lstm_pred = predict(net, XTest');
    
    % 反归一化LSTM预测结果
    lstm_pred = lstm_pred * sigma + mu;
    
    %% 3. ARIMA-LSTM混合模型预测结果
    % 组合ARIMA和LSTM的预测结果
    final_pred = arima_pred + lstm_pred';
    
    % 计算预测误差
    mae = mean(abs(final_pred - test_data));
    rmse = sqrt(mean((final_pred - test_data).^2));
    
    % 显示预测结果
    figure;
    plot(1:length(test_data), test_data, 'b', 'DisplayName', '真实数据');
    hold on;
    plot(1:length(test_data), final_pred, 'r--', 'DisplayName', 'ARIMA-LSTM预测');
    title('ARIMA-LSTM时间序列预测');
    legend;
    xlabel('时间');
    ylabel('值');
    

3. 代码说明
  1. ARIMA模型部分:通过Matlab内置的ARIMA工具箱,首先对训练数据进行ARIMA模型拟合,然后利用拟合后的模型对测试集进行预测,获取其长期线性趋势。
  2. LSTM模型部分:通过对ARIMA残差进行LSTM训练,以捕捉时间序列中的非线性特征。这里LSTM模型的输入是ARIMA残差,而输出是下一时刻的预测残差。
  3. 组合预测:ARIMA模型用于捕捉线性趋势,LSTM用于拟合残差中的非线性部分。最终的预测结果为两者的加权组合。
4. 模型的扩展

针对多变量时间序列预测,本文还提出了基于DA-LSTM的改进模型,融合了双向LSTM、注意力机制和鲸鱼优化算法(WOA)。在多变量序列中,DA-LSTM能够同时捕捉各变量间的相关性和时间序列中的长期依赖性。具体的实现步骤可以在现有ARIMA-LSTM的基础上进行扩展,并结合WOA进行参数优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值