✅博主简介:本人擅长数据处理、建模仿真、程序设计、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。
在单变量时间序列预测中,ARIMA和LSTM模型具有各自的优势:ARIMA模型能够较好地处理时间序列中的线性部分,尤其是在处理长期趋势时表现较佳;而LSTM(长短期记忆网络)模型则擅长捕捉序列中的非线性依赖关系。为此,本文构建了一种ARIMA-LSTM组合模型,利用ARIMA模型预测时间序列中的长期线性趋势,利用LSTM模型拟合非线性部分,从而实现对时间序列的全面预测。
1. ARIMA-LSTM模型概述
ARIMA模型通过对序列的平稳化处理(包括差分、移动平均等),能够有效捕捉数据的线性趋势。然而,单独使用ARIMA模型在处理含有复杂非线性动态的时间序列时,效果有限。LSTM模型利用其记忆单元和门控机制,能够捕捉时间序列中的长期依赖和非线性特征。因此,ARIMA-LSTM混合模型的设计思路是:
- 使用ARIMA模型对时间序列中的线性趋势进行预测;
- 将ARIMA的残差部分作为LSTM模型的输入,进行非线性特征的拟合;
- 将两者的预测结果进行加权组合,得到最终的预测结果。
-
% 数据加载 data = load('time_series_data.mat'); % 假设数据已存储在MAT文件中 time_series = data.series; % 获取时间序列 % 数据预处理:划分训练集和测试集 train_size = floor(0.8 * length(time_series)); % 80%数据用于训练 train_data = time_series(1:train_size); test_data = time_series(train_size+1:end); %% 1. ARIMA模型拟合与预测 % ARIMA模型拟合(假设ARIMA(2,1,2)) model = arima(2,1,2); arima_fit = estimate(model, train_data); % 使用ARIMA模型进行预测 arima_pred = forecast(arima_fit, length(test_data)); % 计算ARIMA的残差 arima_residuals = train_data - infer(arima_fit, train_data); %% 2. LSTM模型训练与预测 % LSTM输入数据的准备(使用ARIMA残差进行训练) sequence_input = arima_residuals; % 归一化处理 mu = mean(sequence_input); sigma = std(sequence_input); sequence_input = (sequence_input - mu) / sigma; % 将序列转换为LSTM格式(输入为特征,输出为下一时间点的残差) XTrain = sequence_input(1:end-1)'; YTrain = sequence_input(2:end)'; % 定义LSTM网络结构 layers = [ ... sequenceInputLayer(1) lstmLayer(50, 'OutputMode', 'sequence') fullyConnectedLayer(1) regressionLayer]; % 训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 250, ... 'InitialLearnRate', 0.005, ... 'MiniBatchSize', 20, ... 'Plots', 'training-progress', ... 'Verbose', 0); % 训练LSTM模型 net = trainNetwork(XTrain, YTrain, layers, options); % LSTM预测(使用ARIMA预测的残差) XTest = (test_data - arima_pred - mu) / sigma; % 使用ARIMA预测残差作为LSTM输入 lstm_pred = predict(net, XTest'); % 反归一化LSTM预测结果 lstm_pred = lstm_pred * sigma + mu; %% 3. ARIMA-LSTM混合模型预测结果 % 组合ARIMA和LSTM的预测结果 final_pred = arima_pred + lstm_pred'; % 计算预测误差 mae = mean(abs(final_pred - test_data)); rmse = sqrt(mean((final_pred - test_data).^2)); % 显示预测结果 figure; plot(1:length(test_data), test_data, 'b', 'DisplayName', '真实数据'); hold on; plot(1:length(test_data), final_pred, 'r--', 'DisplayName', 'ARIMA-LSTM预测'); title('ARIMA-LSTM时间序列预测'); legend; xlabel('时间'); ylabel('值');
3. 代码说明
- ARIMA模型部分:通过Matlab内置的ARIMA工具箱,首先对训练数据进行ARIMA模型拟合,然后利用拟合后的模型对测试集进行预测,获取其长期线性趋势。
- LSTM模型部分:通过对ARIMA残差进行LSTM训练,以捕捉时间序列中的非线性特征。这里LSTM模型的输入是ARIMA残差,而输出是下一时刻的预测残差。
- 组合预测:ARIMA模型用于捕捉线性趋势,LSTM用于拟合残差中的非线性部分。最终的预测结果为两者的加权组合。
4. 模型的扩展
针对多变量时间序列预测,本文还提出了基于DA-LSTM的改进模型,融合了双向LSTM、注意力机制和鲸鱼优化算法(WOA)。在多变量序列中,DA-LSTM能够同时捕捉各变量间的相关性和时间序列中的长期依赖性。具体的实现步骤可以在现有ARIMA-LSTM的基础上进行扩展,并结合WOA进行参数优化。