稀疏训练是通过在损失loss
中增加BN
的 γ \gamma γ 参数的L1正则,
从而让绝大多数通道对应的 γ \gamma
剪枝基础与实战(4):稀疏训练及剪枝效果展示
于 2023-08-21 16:25:53 首次发布
稀疏训练是通过在损失loss
中增加BN
的 γ \gamma γ 参数的L1正则,
从而让绝大多数通道对应的 γ \gamma