Diffusion Planner(1): 论文解读

在这里插入图片描述

在复杂开放世界中实现类人驾驶行为是自动驾驶领域的一项关键挑战。基于学习的现代规划方法(如模仿学习)常因适应性有限、难以学习人类规划中常见的复杂多模态行为,而在平衡多目标与安全保障方面存在不足,更遑论其高度依赖基于预定义规则的降级策略。我们提出一种基于Transformer架构的扩散规划模型,用于实现闭环规划,该模型能有效建模多模态驾驶行为,并在无需基于规则修正的情况下确保轨迹质量。该架构支持预测与规划任务在统一框架下的联合建模,从而实现车辆间的协同行为。此外,通过学习轨迹评分函数的梯度并采用灵活的分类器引导机制,扩散规划器能有效实现安全且自适应的规划行为。在大规模真实世界自动驾驶规划基准nuPlan及我们新收集的200小时配送车辆驾驶数据集上的评估表明,扩散规划器在多种驾驶风格中均展现出卓越的闭环性能与稳健的迁移能力。项目官网:https://zhengyinan-air.github.io/Diffusion-Planner/

### Stable Diffusion 论文解读与总结 #### 背景介绍 Stable Diffusion 是一种基于扩散模型Diffusion Models)的图像生成技术,其核心在于通过逐步去除噪声来生成高质量的图像。为了理解 Stable Diffusion 的原理及其背后的机制,需要先了解一些基础知识,例如编码器的工作方式以及潜在扩散模型(Latent Diffusion Models, LDMs)的概念[^1]。 #### 早期工作与发展 在深入研究 Stable Diffusion 前,回顾其早期发展是非常重要的。最初的理论框架建立在变分自编码器(VAE)、条件生成对抗网络(cGAN),以及其他生成模型的基础上。这些模型为后来的扩散模型奠定了坚实的基础。特别是 VAE 和 CLIP 文本编码器的设计理念,在 Stable Diffusion 中得到了进一步扩展和应用[^3]。 #### 核心组件解析 Stable Diffusion 主要由以下几个部分组成: 1. **VAE (Variational Autoencoder)** 变分自编码器用于将高维像素空间映射到低维潜空间,从而减少计算复杂度并提高效率。这一过程使得模型能够在较低维度的空间中操作,同时保留足够的信息以重建原始图像[^3]。 2. **CLIP Text Encoder** CLIP 模型负责处理输入文本提示,并将其转换成可以指导 U-Net 进行图像生成的嵌入向量。这种跨模态的能力使 Stable Diffusion 不仅能够生成视觉内容,还能根据自然语言描述调整输出风格[^3]。 3. **U-Net 结构** U-Net 是一个经典的卷积神经网络架构,广泛应用于医学影像分析等领域。在 Stable Diffusion 中,它被用来执行去噪任务,即从含噪数据中恢复清晰的目标图像。具体来说,U-Net 接收来自 CLIP 编码器的条件信号以及当前迭代阶段的状态作为输入,最终输出经过改进后的特征表示。 4. **加噪与去噪流程** 扩散模型的核心思想是模拟物理系统的热力学行为:首先对初始干净样本施加随机扰动形成一系列中间状态;随后训练一个逆向过程学习如何逆转此变化直至完全还原原貌。这种方法具有较强的泛化能力,适用于多种类型的媒体创作场景[^3]。 #### 技术优势与挑战 相比传统 GAN 方法可能存在的模式崩溃问题,扩散模型展现出更好的稳定性表现。然而,由于涉及大量连续采样步骤,整体运行时间相对较长也是一个不可忽视的因素。针对这一点,《High-Resolution Image Synthesis with Latent Diffusion Models》提出了利用隐变量加速收敛速度的新思路,显著提升了实际部署中的用户体验[^2]。 ```python import torch from diffusers import StableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) prompt = "A beautiful landscape painting under the sunset." image = pipe(prompt).images[0] image.save("output_image.png") ``` 以上代码片段展示了如何加载预训练好的 Stable Diffusion 模型并通过简单的 API 调用完成定制化的艺术作品生成任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值