对于含有内生解释变量 P 及其参与构成的交乘项 PX 的模型
显然不考虑交乘项的内生性、只引入内生解释变量 P 的工具变量 Z 进行两阶段最小二乘估计(2SLS)是不合理的。根据Ebbes et al.(2016),对这种情况目前主要有两种处理方式:
一、做两个2SLS
Step 1: 对内生解释变量 P 和含有内生解释变量的内生交乘项 PX 分别做一阶段回归:
Step 2: 将两个一阶段回归的拟合结果 P ^ \hat{P} P^ 和 P X ^ \hat{PX} PX^ 带回到原模型中进行第二阶段回归:
二、控制函数法(CF)
近些年来,学者们尝试使用控制函数法(CF)来缓解内生性问题(Petrin and Train, 2010; Ebbes et al., 2011; Wooldridge, 2015)。与 2SLS 将第一阶段回归的拟合项放入原回归方程中代替内生变量的做法不同,CF 则是将第一阶段回归的残差项直接作为一个额外的回归项引入原方程中且并不对原方程的变量进行任何替换。举个例子:
在以上模型中,P 为内生变量,Z 为其工具变量。该模型第一阶段回归为:
将第一阶段回归的残差 ν ^ = P − P ^ \hat{\nu} = P-\hat{P} ν^=P−P^ 直接加入原模型:
Verbeek(2012) 指出该模型的回归系数与 2SLS 完全一致。在这个过程中,体现了 CF 的朴素思想:CF认为第一阶段回归的残差 ν ^ \hat{\nu} ν^ 捕捉了造成原模型存在内生性问题的“遗漏变量”。而将第一阶段回归的残差纳入到原模型进行控制即可认为原模型控制了造成内生性问题的“遗漏变量”,从而可以缓解内生性问题。从这个角度来说,我们可以通过检验 ν ^ \hat{\nu} ν^ 的系数 β 2 \beta_2 β2 是否显著来判断原模型是否存在内生性问题,相当于一个简单版的 Hausman 检验。
而控制函数法解决含有内生交乘项模型的内生性问题的步骤也很简单:
Step 1: 只做一个一阶段回归:
Step 2: 将第一阶段回归的残差 ν ^ = P − P ^ \hat{\nu} = P-\hat{P} ν^=P−P^ 纳入到原模型中进行回归:
注意CF方法虽然系数与2SLS完全一致,但是第二步回归的标准差并不准确,需要使用 Bootstrap 标准误。
三、两阶段最小二乘(2SLS)与控制函数(CF)的区别与联系
- 在工具变量(IV)的选择上:
- CF与2SLS对工具变量的要求同样严格,即工具变量需要与内生变量有较强的相关性,并且相对于误差项有较强的外生性。
- 在回归系数上:
- CF与2SLS在本文所述情形中的回归系数是完全一样的(Verbeek, 2012)。
- 在标准误上:
- 2SLS 不需要做额外调整,CF 需要使用Bostrap标准误,Karaca-Mandic and Train(2003) 和 Papies et al.(2017) 中提供了 CF 调整标准误的算法。
- 在适用范围上:
- 对于线性模型,2SLS 相对于 CF 有绝对的优势,因为系数相同且不需要额外调整标准误。
- 对于被解释变量非连续的模型(比如二元选择模型等),CF 往往可以更直接有效地控制内生性。
参考文献
[1] Ebbes P, Papies D, Van Heerde H J. The sense and non-sense of holdout sample validation in the presence of endogeneity[J]. Marketing Science, 2011, 30(6): 1115-1122.
[2] Ebbes P, Papies D, van Heerde H J. Dealing with endogeneity: a nontechnical guide for marketing researchers[J]. Handbook of market research, 2017: 1-37.
[3] Karaca‐Mandic P, Train K. Standard error correction in two‐stage estimation with nested samples[J]. The Econometrics Journal, 2003, 6(2): 401-407.
[4] Papies D, Ebbes P, Van Heerde H J. Addressing endogeneity in marketing models[M]. Advanced methods for modeling markets. Springer, Cham, 2017: 581-627.
[5] Petrin A, Train K. A control function approach to endogeneity in consumer choice models[J]. Journal of marketing research, 2010, 47(1): 3-13.
[6] Verbeek M. A guide to modern econometrics[M]. John Wiley & Sons, 2008.
[7] Wooldridge J M. Control function methods in applied econometrics[J]. Journal of Human Resources, 2015, 50(2): 420-445.