处理效应模型及 Stata 具体操作步骤

目录

一、引言

二、理论原理

三、数据准备

四、倾向得分匹配(PSM)操作步骤

五、双重差分法(DID)操作步骤

六、代码运行结果解释


一、引言

处理效应模型是一种用于评估干预或处理对结果变量影响的统计方法。在许多研究领域,如经济学、社会学和医学等,处理效应模型被广泛应用以解决选择性偏差和内生性问题。

二、理论原理

处理效应模型主要有两种常见类型:倾向得分匹配(Propensity Score Matching,PSM)和双重差分法(Difference-in-Differences,DID)。

  1. 倾向得分匹配(PSM)
    • 基本思想:倾向得分匹配的核心思想是基于“可观测的协变量”来模拟一个随机实验的环境。通过构建一个综合反映个体接受处理可能性的倾向得分,然后根据这个得分对处理组和控制组的个体进行匹配,使得匹配后的处理组和控制组在可观测的特征上尽可能相似,从而减少由于个体特征差异导致的选择性偏差。
    • 数学原理:倾向得分定义为在给定可观测协变量的情况下个体接受处理的条件概率。通过逻辑回归或其他方法估计出这个概率。
    • 优点:能够在一定程度上解决由于不可观测因素导致的选择性偏差问题;相对简单直观,易于理解和解释。
    • 局限性:依赖于正确的模型设定和可观测协变量的完整性,如果存在重要的不可观测因素未被纳入模型,可能仍然存在偏差;对于连续型处理变量的处理相对复杂。

例如,假设我们研究某种药物治疗对疾病康复的效果。个体的年龄、性别、基础健康状况等会影响是否接受治疗以及康复情况。通过倾向得分匹配,找到在这些因素上相似但一组接受治疗,一组未接受治疗的个体进行比较,从而更准确地评估治疗效果。

  1. 双重差分法(DID)
    • 基本思想:双重差分法通过比较处理组在处理前后的变化与控制组在相同时间段内的变化,从而分离出处理的净效应。其前提是假设在没有处理的情况下,处理组和控制组的变化趋势是相同的。
    • 数学原理:利用两组(处理组和控制组)在两个时间点(处理前和处理后)的数据,构建双重差分估计量。
    • 优点:可以较好地控制随时间不变的不可观测因素的影响;适用于评估政策或干预的动态效果。
    • 局限性:要求处理组和控制组在处理前具有平行趋势;可能受到其他同时期政策或事件的干扰。

例如,研究某个城市实施新的环保政策对空气质量的影响。选取实施政策的城市作为处理组,未实施政策的相似城市作为控制组,比较政策实施前后两组城市空气质量的变化差异,以评估政策效果。

三、数据准备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值