理解线性回归中的常数项

如何理解线性回归中的常数项

线性模型

线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即:

f(x)=w1x1+w2x2+…+wdxd+b+e

很容易理解,b是常数项,代表的是截距,而e是误差。

线性模型
以上图像代表的是一元线性模型,而多元线性模型则使用更多的自变量去描述因变量。
从一元线性模型入手,我们可以发现:
1)误差是实际的数据点和我们回归模型之间的差值,并不一定,有大有小,符合正态分布的规律。
2)常数项解释的是,不被自变量所解释的,长期稳定存在的非随机部分,也可称为信息残留。

常数项的存在帮助我们解决了一个问题:当所有的自变量为0的时候,因变量是什么?然而这样的解释仅具有数学意义。
所谓的拟合过程,追求的是残差项的均值为0,且残差项的平方和最小。以此规则计算得出的各项参数,可以使得一条拟合曲线在我们的数据点中浮动,并最终找到一个位置,是的残差项的均值为0。此时,我们的截距就是常数项。可以说这是对解释变量留下的偏误进行线性修正。本身并不具备可以理解的现实意义。
另外,常数项也被这样解读,它是一个恒为1的虚拟变量的参数。这帮助我们利用了本可能被忽略的因素。
而且,残差项未必总是按标准正态分布,如果它们的均值不为0,而存在一个期望,事实上这个期望会被包括在常数项之中。帮助我们修正这正太分布的均值,使之为0。

内容概要:本文详细介绍了基于Simulink平台构建的锂电池供电与双向DCDC变换器智能切换工作的仿真模型。该模型能够根据锂离子电池的状态荷电(SOC)自动或手动切换两种工作模式:一是由锂离子电池通过双向DCDC变换器向负载供电;二是由直流可控电压源为负载供电并同时通过双向DCDC变换器为锂离子电池充电。文中不仅提供了模式切换的具体逻辑实现,还深入探讨了变换器内部的电压电流双环控制机制以及电池热管理模型的关键参数设定方法。此外,针对模型使用过程中可能遇到的问题给出了具体的调试建议。 适用人群:从事电力电子、新能源汽车、储能系统等领域研究和技术开发的专业人士,尤其是那些希望深入了解锂电池管理系统及其与电源转换设备交互机制的研究者和工程师。 使用场景及目标:适用于需要评估和优化锂电池供电系统的性能,特别是涉及双向DCDC变换器的应用场合。通过学习本文提供的理论知识和实践经验,可以帮助使用者更好地理解和掌握相关技术细节,从而提高实际目的设计效率和可靠性。 其他说明:为了确保仿真的准确性,在使用该模型时需要注意一些特定条件,如仿真步长限制、电池初始SOC范围以及变换器电感参数的选择等。同时,对于可能出现的震荡发散现象,文中也提供了一种有效的解决办法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值