机器学习——回归系数的计算(2)

本文详细介绍了回归系数的计算方法,包括最小二乘法、梯度下降法、牛顿方法和局部线性加权。讨论了每种方法的优缺点,如梯度下降的全局最小值问题,牛顿法的快速收敛性,以及局部线性加权对欠拟合的改善。此外,还提到了在矩阵不满秩情况下的岭回归和LASSO回归,探讨了它们如何处理特征过多或矩阵非满秩的问题。
摘要由CSDN通过智能技术生成

 

1、最小二乘法(min square)求解回归系数

将训练特征表示为 X 矩阵,结果表示成 y 向量,仍然是线性回归模型,误差函数不变。那么
θ 可以直接由下面公式得出

J(\Theta )=\frac{1}{2} \sum_{i=1}^{m}(h_{\Theta }(x^{(i)})-y^{(i)})^{2}

用矩阵可表示为  J(\Theta )=\frac{1}{2}(\vec{y}-X\Theta)^{T}(\vec{y}-X\Theta)                                              

因为要求函数的极小值,对θ求导可得

X^{T}(\vec{y}-X\Theta )使其等于0,即X^{T}(\vec{y}-X\Theta )=0

则有X^{T}\vec{y}=X^{T}X\Theta

可求得回归系数\Theta =(X^{T}X)^{-1}X^{T}\vec{y}

注意:上述公式中包含(X^{T}X)^{-1},也就是需要对矩阵求逆,因此这个方程只有在输入数据的矩阵X是列满秩矩阵时,即逆矩阵存在的时候有用。当数据的矩阵X不是列满秩矩阵时,需要使用岭回归的方法进行求解。

2、梯度下降法求解回归系数

在选定线性回归模型后,只需要确定参数 θ,就可以将模型用来预测。然而 θ 需要在 J(θ)最小的情况下才能确定。因此问题归结为求极小值问题,使用梯度下降法。 梯度下降法最大的问题是求得有可能是全局极小值,这与初始点的选取有关。
梯度下降法是按下面的流程进行的:
1)首先对 θ 赋值,这个值可以是随机的,也可以让 θ 是一个全零的向量。
2)改变 θ 的值,

  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值