SPIRiT-Diffusion:基于自一致性驱动的加速MRI扩散模型|文献速递-基于深度学习的病灶分割与数据超分辨率

Title

题目

SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI

SPIRiT-Diffusion:基于自一致性驱动的加速MRI扩散模型

01

文献速递介绍

磁共振成像(MRI) 在临床和研究领域被广泛应用。然而,其长时间的采集过程仍然是一个主要限制,导致在空间分辨率、时间分辨率和覆盖范围之间存在权衡。因此,如何从有限的 k-空间数据中重建高质量的 MR 图像以加速采集,成为研究的热点。近年来,压缩感知(CS)  和 深度学习(DL) 在 MR 重建领域取得了显著进展。这些方法利用图像先验信息创建手工设计或可学习的正则化,并将其与数据一致性项结合,用以解决 MR 重建中的逆问题。

最近,基于得分的扩散模型 已成为 MR 重建中的一种强大深度生成先验这些模型依赖于前向和反向随机微分方程(SDEs)来编码和解码(生成)图像。前向 SDE 包括一个漂移项,表示前向过程的确定性趋势,以及一个扩散项,表示随机波动。例如,在方差保持(VP)SDE 中,漂移项线性描绘了能量减少的确定性趋势,表明图像信号的均值会确定性地衰减到零。反向 SDE 是从前向 SDE 推导出来的,通过边际概率密度的得分函数来指导图像重建。与传统方法不同,基于得分的 MR 重建学习的是数据分布,而不是 k-空间数据和图像之间的端到端映射,这使得无监督学习成为可能,并且有助于适应分布外的数据。已有的研究表明,这种方法在 MR 重建中取得了很好的效果。

扩散模型在 MRI 中已经取得了成功。目前,许多基于扩散模型的重建方法主要设计在图像域,依赖于单个线圈的空间灵敏度图(CSM)作为多通道图像的加权函数。然而,准确地测量 CSM 是一个挑战,尤其是在视场(FOV)受限时 或当存在相位奇点时 , 。即使是微小的灵敏度估计误差,也可能导致线圈图像和采集的 k-空间数据之间的不一致,从而导致重建图像中的伪影。另一方面,直接插值缺失的 k-空间数据可以规避与 CSM 估计相关的挑战,这在 k-空间并行成像(PI)方法中得到体现,如 GRAPPA 、SPIRiT  等方法。这些方法通过估计平移不变的插值核,描述多通道 k-空间数据之间的冗余先验,从而使得缺失的 k-空间数据能够在较低的灵敏度估计误差下进行估计。因此,k-空间插值方法相比图像域方法展现出了更大的鲁棒性。基于这一点,依赖 k-空间插值的扩散模型可能继承了对不准确 CSM 估计的鲁棒性。此外,这种方法结合了通道冗余和数据分布的先验,从而提高了在高加速条件下插值缺失 k-空间数据的准确性 。然而,目前的扩散模型主要是在图像域内构建的,因此不能直接应用于这种情况。

为了应对这一问题,我们从优化的角度重新评估了传统的 k-空间插值 SPIRiT 模型。通过将 SPIRiT 模型的迭代算法视为某些 SDEs 的离散欧拉形式,我们从这一角度获得灵感,提出了一种基于扩散的 MR 重建方法。在这种方法中,SPIRiT 的自一致性项作为 SDE 中的主要漂移系数起着关键作用。此外,CSM 被引入到扩散系数中,以准确计算扰动核的均值和方差。虽然我们提出的方法仍需要纳入 CSM,但其主要关注的是多通道 k-空间插值,而不是基于 CSM 合成的单通道图像重建。因此,我们提出的模型展现出了对不准确灵敏度估计的鲁棒性。由于该方法在自一致性方面受到 SPIRiT 启发,我们将其称为 SPIRiT-Diffusion。

Aastract

摘要

Diffusion models have emerged as a leadingmethodology for image generation and have proven successful in the realm of magnetic resonance imaging (MRI)reconstruction. However, existing reconstruction methodsbased on diffusion models are primarily formulated in theimage domain, making the reconstruction quality susceptible to inaccuracies in coil sensitivity maps (CSMs). k-spaceinterpolation methods can effectively address this issue butconventional diffusion models are not readily applicablein k-space interpolation. To overcome this challenge, weintroduce a novel approach called SPIRiT-Diffusion, whichis a diffusion model for k-space interpolation inspiredby the iterative self-consistent SPIRiT method. Specifically, we utilize the iterative solver of the self-consistentterm (i.e., k-space physical prior) in SPIRiT to formulatea novel stochastic differential equation (SDE) governingthe diffusion process. Subsequently, k-space data canbe interp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值