1.环面
a. 环面的方程为:
(
r
0
−
x
2
+
y
2
)
2
+
z
2
=
r
1
2
(r_0 - \sqrt{x^2+y^2})^2+z^2=r_1^2
(r0−x2+y2)2+z2=r12
b. 参数方程也可写作(
r
1
r_1
r1为小圆半径,
r
0
r_0
r0为大圆半径):
x
=
(
r
0
+
r
1
cos
v
)
cos
u
y
=
(
r
0
+
r
1
cos
v
)
sin
u
z
=
r
1
sin
v
\begin{matrix} x=(r_0+r_1\cos{v})\cos{u}\\ y = (r_0+r_1\cos{v})\sin{u}\\ z=r_1\sin{v} \end{matrix}
x=(r0+r1cosv)cosuy=(r0+r1cosv)sinuz=r1sinv
2.旋转曲面方程
a. 曲线
L
L
L:
{
F
(
x
,
y
,
z
)
=
0
G
(
x
,
y
,
z
)
=
0
⋯
(
1
)
\left\{ \begin{matrix} F(x,y,z)=0 \\ G(x,y,z)=0 \end{matrix} \right. \cdots(1)
{F(x,y,z)=0G(x,y,z)=0⋯(1)
b. 旋转轴:
z
z
z轴=
(
0
,
0
,
1
)
(0,0,1)
(0,0,1)
c. 取曲线上一点
M
(
x
1
,
y
1
,
z
1
)
M(x_1,y_1,z_1)
M(x1,y1,z1),绕z轴旋转后的对应点为:
M
′
(
x
,
y
,
z
)
M'(x,y,z)
M′(x,y,z)
则有:
x
2
+
y
2
+
z
2
=
x
1
2
+
y
1
2
+
z
1
2
⇔
x
2
+
y
2
=
x
1
2
+
y
1
2
⋯
(
2
)
x^2+y^2+z^2=x_1^2+y_1^2+z_1^2\Leftrightarrow x^2+y^2 =x_1^2+y_1^2\cdots(2)
x2+y2+z2=x12+y12+z12⇔x2+y2=x12+y12⋯(2)
d. 式(1)(2),联立消去
x
,
y
x,y
x,y,可求的旋转曲面方程
f
(
x
1
,
y
1
,
z
1
)
f(x_1,y_1,z_1)
f(x1,y1,z1)。
3.环面方程推导
环面可以看作一个圆绕z轴旋转,则可以利用旋转方程推导
a. 圆方程:
z
2
+
(
y
−
r
0
)
2
=
r
1
2
,
x
=
0
z^2+(y-r_0)^2=r_1^2,x=0
z2+(y−r0)2=r12,x=0
b. rotation:
x
2
+
y
2
+
z
2
=
x
1
2
+
y
1
2
+
z
1
2
,
z
=
z
1
x^2+y^2+z^2 = x_1^2+y_1^2+z_1^2,z=z_1
x2+y2+z2=x12+y12+z12,z=z1
c. 由2可得,环面方程为:
(
r
0
−
x
2
+
y
2
)
2
+
z
2
=
r
1
2
(r_0 - \sqrt{x^2+y^2})^2+z^2=r_1^2
(r0−x2+y2)2+z2=r12